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Abstract— Implementing shared memory consistency models
on top of hardware caches gives rise to the well-knowncache
coherence problem. The standard solution involves implementing
coherence protocols in hardware, an approach with some design
complexity, hardware costs, and restrictions on interconnect
behavior. However, for some memory consistency models, an
alternative is to enforce coherence in the software implemen-
tation of synchronization primitives, using software controlled
invalidations and forced writebacks. This requires minimal hard-
ware support but gives less selective enforcement, which affects
performance.

This paper proposes a novel hybrid software-hardware co-
herence mechanism. In this scheme software is responsible
for triggering the coherence actions – self-invalidationsand
writebacks – at appropriate times while hardware uses Bloom
filters to perform more selective self-invalidations.

We evaluate the proposed scheme on applications from two
different domains: the SPLASH-2 scientific and ALP multimedia
benchmarks. Experimental results show that while the software-
only coherence scheme shows less performance degradation than
expected it still unacceptably degrades performance for some of
the benchmarks. Filtering out unnecessary invalidations improves
the worst-case performance by as much as 93%, and brings the
performance of the hybrid scheme within 5% of full hardware
coherence for 10 out of 13 benchmarks, on a 32-core CMP with
a shared L2 cache.

Index Terms— Multiprocessors, Cache Coherence

I. INTRODUCTION

SMALL- and medium-scale multiprocessors are now com-
monplace, from single-chip embedded systems, desktops

and workstations, to multi-chip servers and even game con-
soles. These multiprocessors provide a single address space
and are usually programmed using theshared-memorypro-
gramming model. The use of hardware data caches with this
programming model leads to the problem of cache coherence.

Traditionally, cache coherence has been enforced in hard-
ware with coherence protocols. Snooping coherence was for
some time a straightforward mechanism to implement on top
of shared buses. However, implementing snooping coherence
in more recent technology requires much more complex in-
terconnects both in the backplane [10] and on chip [23].
Alternatively, centralized directory coherence [19], [21] re-
quires large centralized structures that are difficult to scale,
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and distributed directory coherence [25] leads to complex
coherence controllers and protocols that are notoriously hard
to verify [1], [28]. In the early days of shared-memory
multiprocessors, a few attempts were made at enforcing cache
coherence completely in software and also with minimal
hardware support [11]–[14], [16], [31], [35], [38], [40]. The
key idea in such schemes is that software (usually a com-
piler) identifies both the points at which data cached locally
may become stale and the data. Thus,self-invalidationsare
inserted by the software to purge such possibly stale date
before possible consumptions, as well asforced writebacks
to push modified data to memory after possible productions.
On the other hand, hardware assistance may be provided to
refine the identification of data for self-invalidations. These
attempts, however, had significant limitations in that they
could only handle very simple data access patterns and were
only successfully applied to regular scientific and engineering
applications.

Independent of its implementation using caches and hard-
ware cache coherence, programming with the shared-memory
paradigm requires a clear definition of how memory operations
to different memory locations can appear to interleave. For
this purpose, memory consistency models are used and several
have been defined. Arguably the most intuitive models for
programmers aresequential consistency (SC)and release
consistency (RC). Current standard programming languages
and language extensions provide models that are very similar
to these (OpenMP for instance uses a model very similar to
RC).

Since SC requires that all stores become globally visible
before any of the following memory operations by the same
processor, it greatly benefits from hardware cache coherence.
RC, on the other hand, only requires that stores be performed
before the completion of a release operation and, then, only
with respect to the next processor to acquire the lock. Thus,
continuous cache coherence between synchronization points
under RC is simply not necessary and may be overkill. In
fact, the synchronization points under RC are fully exposed
but such knowledge is largely ignored by current hardware
coherence protocol implementations, which still assume that
communication of data across threads can happen at any
memory operation.

The main problem that plagues software-based cache co-
herence is that, for all but the most regular of applications, it
is very difficult for the compiler and/or programmer to safely
know what cached lines have to be invalidated at any particular
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communication point. As a result, most software-based cache
coherence schemes either perform full cache invalidations[40]
or selective but conservative cache invalidations [35]. Such
indiscriminate or conservative selective invalidations may lead
to the unnecessary invalidation of some cached lines and
subsequent cache misses that degrade performance. The key
limitations of software approaches are the limitations of pro-
gram analysis and unpredictable run-time behavior, including
not only variable control flow but also speculative execution
and hardware prefetching. Hardware support has been shown
to help reduce the amount of unnecessary invalidations [11]–
[13], [16], [31].

In this paper we revisit software-based cache coherence with
limited hardware support and propose a scheme that attacks
these limitations in two ways. First, the scheme performs
invalidations only when necessary by leveraging the a-priori
knowledge of true communication points in the applications
under the RC memory model. Previous software-based ap-
proaches have also exploited such knowledge, but mostly
in the more restricted scope of DOALL and DOACROSS
loops (e.g., [11]–[13], [16], [31], [40]). Second, the scheme
filters out some unnecessary invalidations of cache lines using
a simple hardware mechanism based on Bloom filters that,
similar to the Bulk scheme [8], [9], [39], encodes the write
sets of processors in a small signature. The contribution of
this paper is to propose a software protocol, which is enabled
by the use of hardware support solely for the manipulation of
such signatures.

The proposed Bloom filter based hybrid software-hardware
scheme is evaluated and compared against both a simple
software-based scheme with full invalidations and a hardware
cache coherence protocol. The study includes benchmarks
from two different domains – the SPLASH-2 scientific and
ALP multimedia benchmarks – and considers two chip-
multiprocessor (CMP) configurations. Experimental results
show that while the software-only coherence scheme shows
less performance degradation than expected it still unaccept-
ably degrades performance for some of the benchmarks. Fil-
tering out unnecessary invalidations improves the worst-case
performance by as much as 93%, and brings the performance
of the hybrid scheme within 5% of full hardware coherence
for 10 out of 13 benchmarks, on a 32-core CMP with a shared
L2 cache.

The rest of this paper is organized as follows: Section II
discusses cache coherence and memory consistency in more
detail; Section III presents a baseline software-based cache
coherence scheme; Section IV presents our Bloom filter based
selective invalidation scheme; Section V describes our eval-
uation methodology; Section VI presents the experimental
results; Section VII discusses related work; and Section VIII
concludes the paper.

II. THE SHARED-MEMORY PROGRAMMING
MODEL

A. The Cache Coherence Problem

In the shared-memory programming model all threads share
a single virtual address space. This means that when two or

more threads access some program variable they all access the
exact same memory location. When private caches are intro-
duced into the memory hierarchy, multiple copies of the same
variable may exist in one or more caches. If some of these
copies are modified then threads will observe different values
for the same variable. This is known as the cache coherence
problem, and making sure that this does not happen is the
responsibility of the cache coherence mechanism. However,
a coherence mechanism only serves to enforce a consistency
model, which may require synchronization to fully specify an
ordering on a set of memory accesses by different threads.

B. Memory Consistency Models

Memory consistency models specify in what order the
memory operations from different threads to different memory
locations may appear to the threads. In the most strict model,
sequential consistency (SC), the memory operations from
different threads must appear to all threads in a single total
order, and also the memory operations from a given thread
must appear in program order.

int A, B; int A, B;
struct lock flag; struct lock flag;

A = B = 0;
acquire(flag);

barrier(); barrier();

if (pid==0) { if (pid==1) {
A = 1; acquire(flag);
release(flag); B = A;

} }
(a) (b)

Fig. 1. Example of synchronization under RC. VariablesA, B, andflag
are shared.

Many memory consistency models have been proposed that
relax the ordering restrictions of SC. The most relaxed model
is release consistency (RC). This model differentiates special
synchronization operations - acquire and release - from normal
memory operations. Figure 1 shows a producer-consumer
communication pattern under RC. The ordering constraints of
RC and its use of explicit synchronization maps well to the
programmer’s expectations when high-level synchronization
structures are used.

III. SOFTWARE CACHE COHERENCE

The idea behind the software coherence mechanism we pro-
pose for release consistent applications is to allow reads and
writes to shared data in private caches and enforce coherence
at synchronization points. This is done by invalidating cache
lines when the processor reaches an acquire or a barrier (after
writing them back if they are dirty), and by writing back dirty
cache lines when the processor reaches a release. The lines
to invalidate or write back are determined by a conservative
approximation of preceding stores that will communicate data
to another processor (writebacks) and future loads that will
receive data communicated by other processors (invalidations).
The simplest, most conservative approximation is to include
all dirty lines in the writeback set and the whole cache in
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the invalidation set. Barriers are implemented using locksand
result in a combined acquire and release for all processors.

Reads and writes between synchronization points will gen-
erate incoherent cache lines. The invalidation of cached data at
acquires and barriers guarantees that in the future the thread
will obtain, through cache misses, the up-to-date version of
data after it is allowed past a barrier or into a critical section.
For instance, the invalidation of cached data at the acquirein
Figure 1b will purge the stale value ofA and the load after
the acquire is guaranteed to be a cache miss. The writeback
of cached data at releases and barriers guarantees that the
thread will update memory (or some shared lower-level cache)
with its latest version of data before it exits a critical section
or passes a barrier. For instance, the writeback of cached
data at the release in Figure 1a will send the new value
of A to memory before the lock can be released. Finally,
the sequential consistency of acquires and releases combined
with RC’s contract that true sharing can only occur across
synchronization points guarantees that no thread will ever
consume a stale version of data. Thus, the load ofA after
the acquire in Figure 1b is guaranteed to return the new value
of A=1.

While the idea described above seems straightforward,
there are three difficulties associated with it. Firstly, when
using a conservative approximation there may be performance
degradation due to harmful coherence cache invalidations at
barriers and acquires. In Section IV we describe our Bloom
filter scheme for selective invalidations. A second difficulty
associated with the scheme is that, as described, it does
not work when multiple threads write to the same cache
line between synchronization points (false sharing). Thisis
because there is no way of identifying which words or bytes
have been modified by a thread and so it is not safe to
write back the whole line as unmodified bytes may overwrite
modified bytes previously written back by a different thread.
Note that this problem applies to all writebacks, not only the
software managed forced writebacks at synchronization points.
A solution to this problem is described below.

A third difficulty relates to synchronization. Most lock
algorithms nowadays use spin-waiting on a cacheable vari-
able, relying on the cache coherence mechanism to flag the
existence of a modified value. Relying on forced writebacks
and self invalidations to support spin-waiting is possible, but
clearly sub-optimal as a whole cache invalidation would be
performed when clearly only the line containing the lock
variable needs to be invalidated. Instead, with a software
coherence mechanism it makes more sense to modify the
synchronization algorithms to use non-cacheable variables and
backoff mechanisms to avoid too frequent retries. A similar
problem occurs with barriers, which commonly signal the
release via spin-waiting on a cacheable variable and a regular
store to this variable. In this case it also makes sense to replace
these regular loads and stores with non-cacheable ones.

Addressing the second difficulty described above – that of
correctly handling false sharing – completely in software is
difficult. The simplest hardware approach is to use write-
through caches, but this comes with an associated performance
cost from extra write transactions. An alternative for write-

back caches is to add a dirty bit per byte, and only write back
modified bytes when a line is evicted. This scheme comes with
≈ 12.5% area overhead for the dirty bits. We consider both
approaches in the evaluation.

IV. BLOOM FILTER BASED SELECTIVE
SELF-INVALIDATION

A. Overview

Invalidating the whole cache at acquires is clearly too con-
servative. Ideally, we would like to invalidate in the processor
acquiring the lock only the cached lines that are involved in
true communication. These correspond to cached lines that
have been modified by any processor that has held this lock
previously and that are subsequently read by the processor
acquiring the lock. The second condition requires knowledge
of the future, but exploiting it is irrelevant as lines that are not
read after the lock acquire may as well be invalidated. Exploit-
ing the first condition, however, may save future unnecessary
false coherence misses. Obviously, individually identifying all
lines that have been modified by the processors that have held
each lock is impractical. An intermediate solution is to identify
a superset of such lines. This superset should be tight enough
to be a good approximation of the ideal set and its encoding
should be efficient enough to be manipulated in hardware. It
must also be a true superset, meaning that it may include lines
that have not been modified but it must includeall lines that
have been modified.

Bloom filters [7] provide such an efficient superset encod-
ing. Basically, these filters are a space-efficient probabilistic
data structure that can be used to test whether an element
is a member of a set. False positives are possible, but false
negatives are not. They are space-efficient because the re-
sulting signature is much smaller than a complete and exact
representation of the contents of the set.

What we propose then is to use Bloom filters to perform
selective invalidations to assist a software cache coherence
mechanism. The basic idea of the scheme is as follows.
A Bloom filter based write-set signature is maintained in
hardware in each processor and is updated at each store to
the cache (or cache miss) using a portion of the line address.
All signatures are empty at the beginning of the program.
We call these signatures theprocessor-side signatures. At a
lock release the processor’s signature is written to a memory
location associated with the particular lock. This is thelock-
side signature. At a lock acquire the lock-side signature of
the lock being acquired is read from memory and is used
by the hardware to selectively invalidate the local cache.
This signature is then merged (union) with the processor’s
current write-set signature in order to provide the transitive
communication defined by locks.

Barriers are implemented in software using locks and are
mostly handled by the mechanism just described for locks.
In fact, implementations of barriers use a lock that must be
acquired by each processor to enter. Hence, after all processors
have entered, that lock carries the signature of the complete
global write-set for the program so far. This signature can then
be used to selectively invalidate all caches just before resuming
work past the barrier. At this point the barrier can be released.
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The size of a write-set may grow very large over the course
of execution of the program. Hence, signatures may become
saturated (i.e., all bits are set and, thus, membership tests
always return true). In theory, any write that has been seen
by all processors can be removed from all write-sets as it
no longer has to be protected. This would be difficult to do
since Bloom signatures do not support removal of individual
elements. However, all signatures (processor-side and lock-
side) can be reset to empty any time when all writes so far
are visible to all processors. This condition naturally occurs
at barriers. Thus, we clear all signatures just before a barrier
is released.

B. Implementation Details

1) Hardware Write-Set Signature Registers:Maintaining
and manipulating the write-set signatures completely in soft-
ware would incur too high an overhead as each application
store would have to be augmented with possibly multiple loads
(depending on the size of the signature) to obtain the current
signature from memory, some computation to encode the new
signature, and multiple stores to save the new signature back
to memory. Thus, we propose to use hardware assistance for
this operation.

In our proposal the write-set signature for each processor
is stored in an architecturally visible register, similar to what
is done in [39]. This register can be located in the processor
core itself or in the L1 cache controller, depending mostly
on the choice of address bits used to generate the signature.
Being architecturally visible, this register can be addressed by
software and its contents can be loaded from and stored to
memory as necessary. Naturally, such loads and stores may
involve several words as the signature is likely to be in the
order of a few hundred bytes in order to achieve reasonable
selectivity. We name these assembly load and store instructions
LDWSIG andSTWSIG, respectively, and the processor’s write-
set signature registerRSIG1. In addition to this register,
our scheme requires a second signature register where the
signature from other processors can be stored temporarily.This
register is also architecturally visible and we name itRSIG2.

Updating the write-set signature involves simple binary
logic and shift operations, but on a possibly wide datapath.
We propose to implement this operation in hardware using
dedicated logic. This logic is placed next to theRSIG1 and
RSIG2 registers so that it can operate on them. Updates
occur on every application store or only on every cache write
miss, again depending on the choice of address bits used to
generate the signature. As we chose to ignore address bits in
the byte-offset portion of the address, our scheme only updates
RSIG1 on cache write misses. Also, for the hash functions that
we study in this paper the encoding operation amounts to a
traditionalN to 2N DECODER which in current technology
will only take a small number of a processor cycles. Besides
being inexpensive, this operation can be performed in parallel
with the memory lookup. Thus, we do not expect this operation
to affect either the hit or miss latencies, for both loads and
stores.

To perform the selective invalidations of cache lines we
rely on dedicated hardware, which is described in Section IV-

B.2. These operations, however, are invoked by the software
through a new assembly instruction,SIGINVAL. This in-
struction takes no argument and always uses the value in
RSIG2 as the mask for the invalidations. We also propose
to use dedicated hardware under software control to perform
the union of signatures, which is required after the cache
invalidation upon a lock acquire, as described in Section IV-
B.3. This union operation of Bloom filter signatures is a
straightforward bitwise OR operation and will only take a
fraction of a processor cycle. The instruction to invoke this
operation is namedMRGSIG and takes no argument, always
assuming that the value inRSIG2 is to be merged with that
in RSIG1 and stored inRSIG1.

A final architectural extension required to support the
scheme is an additional assembly instruction used by the
software routines to reset the two signature registers. We name
this instructionRSETSIG.

In summary, transferring write-set signatures between pro-
cessor/cache and memory is done in hardware under software
control, as is using signatures to perform the selective invali-
dations and resetting signatures. Updating the local processor-
side write-set signature, on the other hand, is transparently
handled by the hardware.

2) Hardware Selective Cache Invalidations:Figure 2 de-
picts the hardware required to perform all the relevant sig-
nature operations in our scheme. Figure 2a shows the high-
level organization of the hardware for performing the selective
invalidation at lock acquires and barriers (Sections IV-B.3 and
IV-B.4), the union operation at lock acquires (Section IV-B.3),
and the signature update at each cache write miss (Section IV-
B.1). As we can see from this figure, the major hardware
cost comes from the hardware for performing the selective
per-line invalidations. Each circuit for selective invalidations
amounts to a DECODER and a number of 2-input AND gates,
as can be seen in Figure 2b. Each DECODER is similar to
those found in memory address decoding circuits and many
optimization techniques from that domain can be applied,
such as predecoded pairs of bits and dynamic logic. In the
worst case each DECODER can be implemented as shown
in Figure 2c, using large fan-in AND gates or, alternatively,
a tree of low fan-in AND gates. In either case, the cost of
the hardware for selective invalidations is proportional to the
number of such circuits that are used in parallel. The diagram
in Figure 2a shows an aggressive implementation with one
circuit per cache tag.

One alternative to reduce this hardware cost is to group
cache lines and to time-share a single selective invalidation
hardware per group and, thus, sequentially process each line
in a group. This optimization trades off hardware costs for
a larger performance cost for the selective invalidations.We
estimate that the time for the circuit in Figure 2b to process
one cache tag is small enough that it is reasonable to assume
a single invalidation logic per cache set in a 2- or 4-way set-
associative cache. It is worth noting that while the hardware
described above may not be much cheaper in terms of silicon
cost as that of a coherence controller, the benefits we aim for
are in terms of design and verification complexity, not silicon
area. The logic described above is simple and local to each
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Fig. 2. Proposed architectural extensions: (a) overview ofthe architecture for the selective invalidation (used at lock acquires and barriers), union operation
(used at lock acquires), and signature updates (used at cache write misses); (b) mechanisms for performing the signature union, membership test, and signature
update; and (c) simple circuit for decodingN bits from the tag into a2N bit signature.

processor and does not involve a complex protocol.
As the hit latency of upper level caches is commonly on

the processor’s critical path, it is important that the hardware
additions proposed do not increase this latency. The potential
problem is that the circuit used in Figure 2b presents an extra
load on the cache tags. However, we note that the output of
this circuit is not needed for the cache accesses. Thus, in the
case that this extra load may impact the tag checking latency,
one can simply place this circuit in series with the normal
tag checking logic, and out of the critical cache hit path.
Also, the selective invalidation circuit shown in Figure 2ais
only activated at synchronization points and, thus, also has no
impact on normal cache operation.

3) Lock Acquire and Release:One of the key ideas in
our proposal is to rely on the software to decide when
communication has to occur and what the set of processors that
are involved is. As explained in Section III, this is achieved
by leveraging the high-level information provided by the RC
memory consistency model. In order to potentially reduce the
impact of cache flushes, what we propose is to augment the
lock and barrier software data structures with additional write-
set signature information, and their software routines with code
to direct the hardware to manipulate and use these signatures.

Each lock is potentially associated with a communication
chain and the data modified under its protection can be
associated with a write-set signature. We extend the lock data
structure with a field where its associated write-set signature
can be stored. This field consists of multiple words and
hardware support is required to load and store it into hardware

registers (Section IV-B.1). The lock acquire routine is extended
to instruct the hardware to load this write-set signature, to use
it to perform the selective cache invalidations, to merge itwith
the local processor’s write-set signature, and to store it back to
memory. Figure 3a shows (in a mix of C and assembly pseudo-
code) this extended acquire routine for the simple algorithm
based on spinning with exponential backoff [30]. Similarly,
the lock release routine is extended to instruct the hardware
to load the lock’s write-set signature, to merge it with the
local processor’s write-set signature, and to store it backto
memory. This is shown in Figure 3b. Note that reloading the
lock’s write-set signature on a release is necessary in order to
support nested locks.

Other, more complex, lock algorithms can also be used
with the proposed hybrid software/hardware cache coherence
mechanism. The key to porting such algorithms to work with
the proposed mechanism is to make all the data structures used
to communicate state in the algorithm (e.g., the array of slots
and the “next slot” index for the array-based queue lock al-
gorithm [30]) non-cacheable. Another important consideration
is that, as already mentioned, all spin-waiting should be done
with some backoff mechanism to avoid too much traffic.

We envision that these changes only need to be applied to
the synchronization library and no change is required to the
application. Finally, note that writebacks are still performed as
described previously for the software coherence mechanismin
Section III.

4) Barriers: Barriers are usually implemented in software
using a small number of locks and counters and many different



6

struct lock flag; struct lock flag;

void acquire(lock thisflag) { void release(lock thisflag) {
/* original lock acquire code */ /* added code for writeback */
/* thisflag is non-cacheable delay is priv. */ __asm__ ("FLUSHD");
while (test_and_set(thisflag) == LOCKED) {

pause(delay); /* added code for updating sig. */
delay = delay*2; __asm__ ("LDWSIG RSIG2, thisflag.wsig"

} "MRGSIG"
"STWSIG thisflag.wsig, RSIG1");

/* added code for select. inv. */
__asm__ ("LDWSIG RSIG2, thisflag.wsig" /* original lock release code */

"SIGINVAL" /* thisflag is non-cacheable */
"MRGSIG" thisflag = UNLOCKED;
"STWSIG thisflag.wsig, RSIG1"); }

}

(a) (b)

Fig. 3. Pseudo-code for lock acquire (a) and release (b) in the proposed hybrid software/hardware cache coherence mechanism. The base algorithm is the
simple spin with exponential backoff [30]. TheFLUSHD instruction is equivalent to the SparcFLUSH instruction but operates on the data cache. The example
assumes atest and set primitive, but other hardware primitives could be used instead.

algorithms have been proposed (e.g., [30]). Basically, all
algorithms involve acquiring a “check-in” lock, updating some
shared state, releasing the lock(s), and then waiting on some
global release variable. These algorithms work correctly in any
system that correctly implements locks and cache coherence,
including the software scheme with full cache invalidations
described in Section III. Using the signature-based selective
invalidation, however, requires a small change to the barrier
routine.

The problem is that as processors arrive at the barrier and
obtain the check-in lock, they observe a signature that encodes
the cumulative write-sets of all processors that have previously
arrived at the barrier. Thus, only the last processor to arrive
observes the complete signature. To correct this problem we
modify the barrier routine in two ways. First, we add a
new barrier-side signature, stored alongside the barrier data
structure, that is produced by the last arriving processor using
the lock-side signature of the check-in lock merged with its
own processor-side signature. As with the lock-side signatures,
this barrier-side signature is computed by hardware logic but
under software control, which requires augmenting the barrier
code executed by the last arriving processor. Second, we
augment the barrier code so that a processor’s first action once
the barrier is released is to load the (now updated) barrier-
side signature and to use it to invalidate its own cache. Again,
this is done with hardware logic but under software control.
Figure 4 shows (in a mix of C and assembly pseudo-code)
the extended routine for a simple sense-reversing centralized
barrier [30]. Again, more complex barrier algorithms can be
extended to handle the signatures and the key consideration
for the extension is to make the data structures used by the
algorithm non-cacheable.

One important property of barriers is that they represent
application points where all threads must observe exactly the
same state of the shared memory. Our scheme guarantees that
this is the case by ensuring that all shared data is not cached
anywhere. As no shared data is cached at this point it is
safe to reset all the write-set signatures, both the processor-
and lock-side ones. Resetting all the processor-side write-set
signatures is triggered by the software barrier code by issuing
a RSETSIG instruction as the first operation once a processor

resumes execution after the barrier (Figure 4).
Resetting the lock-side write-set signatures of all the locks

is somewhat more involved. First, the synchronization library
code for barriers must be able to identify all the active lock
variables in the application. To support this we augment the
lock declaration or initialization code with extra instructions
to add the lock to a dynamic linked list of locks. For in-
stance, pthreads requires that all locks be initialized (with
pthread mutex init()). We then augment the barrier
routine to traverse this linked list and reset all the lock-side
signatures, by storing anull value in them (with aRSETSIG
and a series ofSTWSIG). This operation only needs to be
performed once, so we make it the responsibility of the last
arriving processor, and it is done after producing the barrier-
side signature and just before releasing the other processors
(Figure 4). Note in Figure 4 that it is not necessary to reset the
barrier-side signature at any point, as it is overwritten atthe
barrier’s next instance. This operation may appear expensive,
but in practice most applications only use a relatively small
number of (static) locks. Moreover, the frequency of global
barriers is low enough and their base cost already high enough
that the performance impact of resetting the lock-side write-set
signatures is likely to be small in practice.

5) Hash Function: Bloom filters use a number of hash
functions to map set elements to positions in a bitmap.
The number and behavior of these functions depend on the
intended use of the Bloom filter. An important design con-
straint in our case is that because these functions must be
implemented in hardware they must be relatively simple and
fast. We have found that using just one function that extracts
certain bit slices from the memory address performs well
enough on our test workloads. For a write-set signature of
2K bits (K = 11 in our experiments), we extract a slice of
K contiguous bits from the write address. Our experiments
showed that different slices can lead to significantly different
selectivity rates. In particular, we noted that bits in the middle
of the address give far better results. These middle bits of the
address contain the page number the address belongs to. Using
these bits provides good selectivity between private and shared
memory pages in threads.

We also tried signatures that encode the exact set of cache



7

struct barrier_t barrier;

barrier.count = P;
barrier.sense = TRUE;
private int local_count;
private int local_sense = TRUE;

void central_barrier() {
/* toggle own sense */
local_sense = !local_sense;

/* check in to barrier */
acquire(barrier.check_in);
local_count = barrier.count--;
release(barrier.check_in);

/* check if last processor */
if (local_count == 1) {

/* added code for lock-side sigs. */
reset_locksidesigs();

/* reset barrier for next instance */
barrier.count = P;
barrier.sense = local_sense;

/* added code for barrier-side sig. */
__asm__ ("MRGSIG"

"STWSIG barrier.wsig, RSIG1");
}
else {

/* wait for barrier release */
/* sense is non-cacheable delay is priv. */
while (sense != local_sense) {

pause(delay);
delay = delay*2;

}

/* added code for sel. inv. */
__asm__ ("FLUSHD"

"LDWSIG RSIG2, barrier.wsig"
"SIGINVAL"
"RSETSIG");

}
}

Fig. 4. Pseudo-code for sense-reversing centralized barrier [30] with write-
set signatures. The procedurereset locksidesigs() resets all the lock
side signatures and is omitted in the interest of space.

set indices as suggested in [8], but found that they provide
no selectivity at all in our case as every set in the caches is
touched by a store operation to a line that maps to it.

C. Discussion

1) Hardware Costs:Table I summarizes the hardware ex-
tensions required by the whole scheme.

In summary, the hardware extensions required by the whole
scheme we propose amounts to: 1) 5 new instructions; 2) 8
bytes per cache line for dirty bits; 3) 512 bytes for the 2
signature registers; 4) 2048 2-input OR gates for the signature
union logic; 5) 11 NOT gates, 1100 2-input AND gates, and
2048 2-input OR gates for the signature update; and 6) 11 NOT
gates, 1100 2-input AND gates, and 2048 2-input OR gates
for the membership test per group of lines (Section IV-B.2).
These numbers assume a 2Kbit signature.

2) Compiler and OS Support:Doing away with hardware
cache coherence has obvious implications for legacy shared-
memory parallel programs. However, properly synchronized
programs, especially those that use calls to a synchronization
library should be easily ported to the hybrid software-hardware
cache coherence scheme proposed here. One potentially diffi-
cult case is that of multithreaded OS’s, which make intensive

TABLE I

SUMMARY OF HARDWARE EXTENSIONS REQUIRED BY THE PROPOSED

HYBRID SOFTWARE/HARDWARE CACHE COHERENCE SCHEME. THE COSTS

FOR SIGNATURE UPDATE AND MEMBERSHIP TEST ASSUME A SIMPLE

DECODERLOGIC AND COULD BE OPTIMIZED. THE COSTS FOR

MEMBERSHIP TEST ARE FOR EACH INDIVIDUAL CIRCUIT

(SECTION IV-B.2).

Extension Cost

Instruction Set

5 new instructions Negligible

SRAM

Dirty bits per byte 8 bytes per cache line
(64byte lines)
2 signature registers 512 bytes total
(2Kbit signatures)

Logic

Signature union 2048 2-input OR gates total
(2Kbit signatures)
Signature update 11 NOT gates +
(2Kbit signatures) 1100 2-input AND gates +

2048 2-input OR gates total
Membership test 11 NOT gates +
(2Kbit signatures) 1100 2-input AND gates +

2048 2-input AND gates

use of synchronization to access their key data structures in
a parallel environment. While porting them to the proposed
scheme is likely not a trivial endeavour, it is facilitated by
the fact that they are usually maintained by a relatively small
number of programmers who have a deep understanding of
the code and the required synchronization points.

Also, the proposed scheme does not require any special
compiler or OS support, but it can potentially benefit from
some assistance. The OS could help, for instance, by placing
the private data of different threads in pages that will not alias
under the hash function used by the hardware. The compiler
could help, for instance, when applications do not use barriers
often, which can lead to signature saturation. In this case,the
compiler can find appropriate points in the program to insert
safe barriers. We leave a study of OS and compiler support
for the proposed scheme as future work.

3) Potential Difficulty: Adoption of Relaxed Models:For
our scheme to be efficient, communication must be infrequent
and must be clearly marked. Applications designed for RC
and some other relaxed models meet these requirements, but
applications designed for other memory consistency models
may not. Thus, the scheme depends heavily on the adoption
of relaxed memory consistency models.

Relaxed memory consistency models were originally in-
troduced mainly because of better performance with respect
to SC and because they are arguably easier to implement
in systems with complex memory hierarchies [3]. Later it
was noted that aggressive dynamic instruction scheduling in
processors could close a large fraction of this performancegap
while still providing a tight memory model to the programmer,
which led to the suggestion that this should be the case [17].
This approach, however, has only been implemented in one
processor, the MIPS R10K. The suggestion was based on the
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assumption that SC is a better memory consistency model from
a software engineering perspective. However, many believe
that most programmers have neither the skills nor the tools
to safely use handcrafted communication and synchronization
that relies on the strict ordering of memory operations imposed
by SC, thus negating its main purported benefit.

While the debate is still open on what memory consistency
models the architecture should provide and what models
programmers should see, in the end what matters is the
models used in de-facto standards for parallel programming
environments. For scientific HPC the leader is OpenMP, and
for embedded, desktop and server applications the dominant
models are Java, and POSIX threads. The consistency model
of OpenMP is only slightly less relaxed than RC in that it
does not allow loads to cross below a release or stores to
cross below an acquire. As such, our scheme can be easily
extended to work with it by the addition of memory fences to
acquires and releases. The memory model for POSIX thread
libraries is deliberately informal, but essentially conforms to
RC in that all communication must be protected by calls to
synchronization routines. Thus, our scheme should work ”out
of the box” with POSIX threads. The Java memory model is
much more involved than those for C, but in essence it also
requires that programs use explicit synchronization. Finally,
a trend in recent programming languages is to use “atomic”
blocks (e.g., [4], [15]), which also fit straightforwardly with
our proposed scheme.

V. EVALUATION METHODOLOGY

A. Applications

For our quantitative performance analysis we use all nine
SPLASH-2 application benchmarks [41] and four ALPBench
benchmarks [27]. The SPLASH-2 benchmarks are representa-
tive of scientific and engineering workloads while the ALP-
Bench benchmarks are representative of multimedia work-
loads. We built both benchmark suites using POSIX threads,
with explicit locks and barriers implemented using custom
assembly code (including all the instructions necessary to
manipulate the lock- and barrier-side signatures). The ALP
benchmarks were optimized so that they created one set of
threads during the initialization phase rather than repeatedly
setting up and tearing down threads during the course of the
program.

We used the reference inputs for the SPLASH-2 bench-
marks. Only 20 frames from the test file are used for
MPGDEC/ENC to reduce simulation time. Because the input
sets for the ALPBench benchmarks were not intended to
be used with more than 16 processors, we do not simulate
larger systems for these benchmarks. For all benchmarks
we only consider the execution time of the parallel region;
i.e., after initialization and before cleanup and printingof
results. Table II lists the benchmarks we used, their inputs,
the number of dynamic barrier occurrences, the number of
dynamic lock acquire occurrences, and the average number of
cycles between two successive synchronization points.

TABLE II

(A) APPLICATIONS USED. THE TOTAL NUMBER OF DYNAMIC LOCK

ACQUIRES IS FOR16 PROCESSORS AND DOES NOT INCLUDE RE-TRIES. (B)

PARAMETERS OF THE MEMORY SUBSYSTEM MODEL.

Benchmark Dyn. Barriers Dyn. Acq. Cycles/Sync.
water-nsq 20 1102 330K
water-spt 20 19 8.1M
ocean-ncp 870 207 423K
ocean-cp 900 207 507K
raytrace 1 3,037 1.6M
radiosity 2 322,779 1.9K
barnes 21 2,403 363K
volrend 20 3,660 241K

fmm 33 6,549 736K
face rec 3 0 2.8M

MPEG dec 40 0 15M
MPEG enc 40 0 27M

sphinx3 4,593 54,151 115K

Parameter Value

No. of cores 1 to 32
Core freq. 2GHz
Issue width 1, in-order

L1,L2 size (bytes) 64 KB, 2MB
L1,L2 associativity 4-way, 4-way

L1,L2 line repl. policy LRU, LRU
L1,L2 line size (bytes) 32 byte, 64 byte
L1,L2 latency (cycles) 3, 15

Memory latency (cycles) 200

B. Simulation Environment

We built our simulators on top of the SPARC target
simulator of Virtutech’s Simics [29]. The baseline Simics
simulator models an in-order single-issue processor usingthe
UltraSPARC III+ instruction set. This simulator does not
model the microarchitecture in detail, but we extended the
simulator with a detailed model of the cache and memory
subsystem. While not modeling the microarchitecture in detail
does introduce some errors, we believe that differences dueto,
for instance, pipelining, operand bypass and branch prediction,
can be considered as secondary effects when compared to the
timing impact of the memory accesses.

C. Designs Evaluated

In our evaluation we concentrate on CMP systems with 32
processors. Consistent with the current trend toward CMP’s
with many, but simple, cores, we assume cores with a rel-
atively low clock rate of 2GHz and with single issue in-
order pipelines. We perform experiments with systems from
two different design domains: a future embedded CMP with
private write-back L1 data caches and no globally shared
L2 (such as Tilera’s Tile64 [5] and Intel’s SCC [18]), and
a future desktop/workstation CMP with private write-through
L1 data caches and a shared write-back L2 cache. The reason
for including both is to assess the impact of the cost of
reloading self-invalidated data, which is an order of mag-
nitude different between an on-chip shared cache and main
memory. Arbitrators for memory transactions are implemented
using separate request and response transactions. The on-
chip interconnect from L1 to L2 cache is 32 byte wide and
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runs at the same frequency as the processors. The off-chip
memory bus is one quad-word wide (16 bytes) and also runs
at the same frequency. Contention is modeled in detail on all
interconnects, properly accounting for the overheads of the
forced writebacks. We used exponential backoff for the lock
acquire spin-wait. Table IIb shows the processor and system
parameters used in the simulations.

For comparison we model CMP systems with full hardware
coherence using an MSI snooping protocol (hdw-MSI), with a
baseline software coherence scheme with full self-invalidations
(stw-FullInv), our proposed hybrid software-hardware scheme
with selective self-invalidations (hyb-BloomInv), and an ideal
software-based scheme with perfect selective self-invalidations
at lock acquires and barriers (PerfInv).

With hyb-BloomInvwe model in detail the latency to load
and write the signatures from memory, as these operations
were added to the assembly code of locks and barriers. As
for the hardware operations shown in Figure 2, we assume
that all operations take one cycle for simplicity (as discussed
in Section IV-B.1 only the encoding operation would take
longer, but it can still be easily overlapped with the memory
operation for the update signature operation and its impactin
the, already expensive, synchronization operations is expected
to be minimal). We assume one invalidation logic per cache set
and invalidations proceed serially with all overhead properly
accounted for.

VI. EXPERIMENTAL RESULTS

A. Overall Performance

Figure 5 shows, for all applications, the performance ofstw-
FullInv, hyb-BloomInv, and PerfInv, for 32 (SPLASH-2) and
16 (ALPBench) processor systems, relative to that ofhdw-
MSI. As can be seen from this figure, the simplestw-FullInv
scheme performs surprisingly well for many applications,
specially for configurations with a shared L2 cache. How-
ever, despite its overall reasonable performance,stw-FullInv
performs unacceptably poorly for some applications: up to
298% performance degradation for systems without L2 and
up to 215% performance degradation for systems with shared
L2. Our proposed Bloom filter based hybrid scheme (hyb-
BloomInv) is able to improve performance overstw-FullInv
by as much as 93%, and 15% on average, for systems without
L2 and by as much as 40%, and 5% on average, for systems
with shared L2, significantly closing the gap. The performance
gap betweenhyb-BloomInvandhdw-MSIfor systems without
L2 is between -6% (i.e., speedup) (MPEG enc) and 130%
(raytrace), and 36% on average. The gap is between -1%
(i.e., speedup) (MPEG enc) and 100% (raytrace), and 11%
on average, for systems with shared L2. More importantly, the
gap is less than 5% for 10 out of 13 applications, for systems
with shared L2. Moreover,hyb-BloomInvperforms very close
to the idealPerfInv, with a performance gap between 0%
(MPEG enc) and 107% (ocean-ncp), and 20% on average, for
systems without L2, and between 0% and 25%, for systems
with shared L2.

To assess the relative impact of full and selective self-
invalidations for different system sizes, we vary the number
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Fig. 5. Execution time for 32/16 processors normalized to hardware
coherence: (a) no L2 configuration, (b) configuration with shared L2.

of processors in the system from 2 to 32/16. Figure 6 shows
the performance results, again normalized to that ofhdw-MSI.
As can be seen from this figure, this relative performance is
mostly independent of the number of processors, at least up
to 32/16 processors.

B. Invalidation Behavior

The success of the proposed scheme depends mainly on
two factors: the fraction of the cache that is invalidated
unnecessarily at each synchronization point and the frequency
of synchronization points. Figure 7 shows, for all applications,
the fraction of the caches that is invalidated for signatures
using different ranges of bits (b[X-Y]), and for the ideal
case (ideal). The numbers are for a single execution interval
between two barriers. We noticed that for all applications the
invalidation behavior is very similar across all such intervals.
As can be seen from this figure, the best signature across
all applications isb[24-14], which simply decodes 11 bits
from the physical address starting from bit 24 to bit 14,
inclusive. Further, to assess the impact of signature size we
tried signatures with 1024 and 4096 bits, encoding bitsb[23-
14] andb[25-14], respectively. The results showed thatb[25-
14] did not perform significantly better than the baseline
b[24-14] and b[23-14] performed slightly worse. Overall,
considering thatb[25-14] signature takes twice as long to be
read and written to memory we believe that the baselineb[24-
14] offers a good design point.
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Fig. 7. Invalidation rates for different signatures.

To put this invalidation fraction within a perspective of
execution progress, Figure 8 shows, for a representative selec-
tion of applications (due to space limitations –fmm, face rec,
MPEG dec, and MPEG enc behave similarly towater-spt;
water-nsq, raytrace, volrend, and sphinx3 behave similarly
to barnes; and ocean-ncpand radiosity behave similarly to
ocean-cp), the fraction of the caches that is invalidated for
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Fig. 6. Execution time for varying number of processors normalized to hardware coherence: (a) (leftmost 2 charts) Bloomfilter based selective invalidations
without L2 (left) and with shared L2 (right), (b) (rightmost2 charts) full invalidations without L2 (left) and with shared L2 (right).

signatureb[24-14] (hyb-BloomInv) and for the ideal case.
Unlike Figure 7, the numbers in this figure are for all synchro-
nization events (lock acquires and barriers) for a representative
execution window of 50M cycles (again, we did not observe
much variability across different windows for any given bench-
mark). Looking at this figure, at the relative performances in
Figure 5, and the rightmost column in Table II we can see three
types of behavior. In the first type of behavior –water-spt–
synchronization is fairly infrequent andhyb-BloomInvachieves
performance very close to the ideal invalidation coherence
and somewhat close to the hardware coherence, regardless of
whether it tracks the ideal invalidation rates closely or not.
In the second type of behavior –barnes– synchronization is
frequent, buthyb-BloomInvtracks the ideal invalidation rate
closely. In this casehyb-BloomInvtends to still perform very
close to the ideal invalidation coherence and somewhat close
to hardware coherence (the exception israytrace, which has a
very high synchronization frequency and all but the hardware
coherence scheme perform poorly). Finally, in the third type
of behavior –ocean-cp– synchronization is also frequent and
hyb-BloomInvdoes not track the ideal invalidation rate closely.
In this casehyb-BloomInvdoes not perform as closely to
the ideal invalidation coherence or hardware coherence, but
it still leads to significant performance gains overstw-FullInv.
Comparing results with the first and third behaviors we can see
that the frequency of synchronization events has a significant
impact in the performance ofhyb-BloomInvand comparing
results with the second and third behaviors we can see the
performance impact of how wellhyb-BloomInvtracks the ideal
invalidation rates.

We did experiment with signatures that encode the exact set
of cache set indices as suggested in [8]. We found, however,
that this provided no selectivity at all as every set in the caches
is touched by a store operation to a line that maps to it. The
difference between our negative results with this technique and
the positive results in [8] is that the threads in our work are
much larger than the transactions and speculative threads in
that work.

VII. RELATED WORK

Software and hybrid cache coherence:Software-directed
cache coherence on shared-memory multiprocessors has been
previously proposed as an alternative to hardware-based cache
coherence [11], [14], [35], [37], [38], [40]. Like the scheme we
propose, such schemes were also based on self invalidations
and forced writebacks of the private caches at synchronization
points (some required a write-through cache instead of forced
writebacks). As in our case, they relied on explicitly marked

synchronization points (often simply the boundaries of parallel
loops). Additionally, to filter out unnecessary invalidations,
such schemes relied on the programmer [35], [37] or the
compiler [11], [12], [14], [31], [38], [40] to identify what
data is involved in the communication and, thus, must be
written back and invalidated. Such schemes, however, were
only applicable to very regular array- and loop-based codes
where static analysis can identify a tight super-set of the
communicated data or when the programmer can clearly
specify critical sections and their data.

Some previous works, similarly to ours, have proposed addi-
tional hardware support to assist with the actual invalidations.
Closest to our work, both [12] and [31] rely on generational
behavior of shared data along synchronization points. They
use per-word version/timestamp tags updated by software to
identify cache lines that do not have to be reloaded after a
synchronization point. The earlier work in [11] used a single
bit to differentiate data versions between two generations,
and it was later extended in [13], [16]. However, unlike our
work, those require complex program analysis to statically
manage the update of the version tags. As a result they were
only successful in programs with simple control flow (often
DOALL and DOACROSS loops) and regular array accesses.
Also, the tag overhead in the caches is much higher than the
overhead of our signatures.

Hardware and software self invalidation:Self-invalidation
of locally cached data has been proposed as a mechanism
to reduce the amount of coherence transactions. Both hard-
ware [24], [26] and compiler-directed [33] schemes have been
proposed. Those schemes differ from ours in that they are non-
exact and they still rely on hardware coherence mechanism to
ensure correctness.

Bloom filter-based bulk invalidation:The idea of using
Bloom filter based signatures to encode a thread’s read- and
write-sets was first proposed in [8]. That work used the
signatures in the context of Thread-Level Speculation (TLS)
and Transactional Memory (TM) for detecting conflicts across
speculative memory accesses and to selectively invalidate
incorrect speculative data from the caches in the case of
roll-backs. Recently, other hardware TM systems have been
augmented with this signature approach [32], [42]. Both TLS
and TM are novel programming models that differ significantly
from the familiar explicitly parallel programming model that
we tackle in our work. Closer to our work, [9] used Bloom
filter read- and write-set signatures in the context of explicitly
parallel shared-memory applications for achieving the behav-
ior of the SC memory model while allowing hardware to
reorder memory operations. Again, the signatures are used for
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Fig. 8. Invalidation rates per synchronization event for Bloom filter based selective invalidation and perfect invalidation. Results are for processor 0 in a
32/16 processor configuration.

detecting conflicts across speculative memory accesses and
to selectively invalidate incorrect speculative data fromthe
caches in the case of roll-backs. The key difference between
such previous work and ours is that in those the protocol is
almost entirely implemented in hardware, while our approach
moves most of the required functionality to software. Another
important difference is that all such previous works are based
on protocols with speculative execution, which require even
further hardware support for roll-back, while our approachis
not speculative.

Concurrently with our work, the work in [39] has also
advanced the idea of exposing signatures to the software while
supporting the costly signature operations in hardware. Our
work differ from that in that our goal is to provide a software
signature-based mechanism that specifically aims at supporting
a software cache coherence approach. The goal of that work
is to provide a very flexible software signature mechanism, so
that it is overkill for addressing the specific problem that we
address. Also, in our work we demonstrate in detail how to
modify the software in order to use such a software signature
mechanism to support software cache coherence.

Software Distributed Shared Memory:There has been much
work on software and hybrid distributed shared memory
systems (e.g., [6], [20], [22], [36]). One common difference
between all of those schemes and ours is that those targeted
clusters of workstations and not only dealt with cache co-
herence but also provided the shared memory image. In our
case we assume multiprocessors with shared memory and only
consider the problem of providing cache coherence in the
software layer. Most of those schemes also differ from ours
in the mechanisms employed to enforce coherence: we rely
on hardware mechanisms to identify the data that must be
invalidated and/or written back and to handle false sharing,
while those rely on the virtual memory system and a page
level diff approach.

VIII. CONCLUSIONS

In this paper we revisit the idea of software-based cache
coherence with explicit writebacks and self-invalidations. Our
study of software cache coherence for relaxed consistency
models has shown that, for a large number of benchmarks
from our test suite, even the most conservative approach
produces surprisingly little performance impact comparedto
a hardware coherence scheme. Certain benchmarks do suffer
from a large negative performance impact due to the full
cache invalidations. We then proposed and evaluated a novel

hardware-assisted scheme that uses Bloom filter based sig-
natures to encode the threads’ write-sets efficiently and to
more selectively invalidate the caches. The proposed scheme
requires only minor changes to the IS and the cache controller.
Experimental results show that the scheme improves the worst-
case performance and brings the performance of the hybrid
scheme very close to full hardware coherence for the vast
majority of the applications studied. This suggests that the
proposed scheme may be a viable alternative to full-blown
hardware cache coherence.
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