Software-Based Cache Coherence with
Hardware-Assisted Selective Self Invalidations
Using Bloom Filters

Thomas J. Ashby, Pedro Diaz, Marcelo Cintkéember, IEEE

Abstract— Implementing shared memory consistency models and distributed directory coherence [25] leads to complex
on top of hardware caches gives rise to the well-knowrtache coherence controllers and protocols that are notoriouahd h
coherence problem. The standard solution involves implementing to verify [1], [28]. In the early days of shared-memory

coherence protocols in hardware, an approach with some degi Ii f tt t de at enforci h
complexity, hardware costs, and restrictions on interconect mulliprocessors, a few attempts were made at enforcingecac

behavior. However, for some memory consistency models, anCoherence completely in software and also with minimal
alternative is to enforce coherence in the software implemre hardware support [11]-[14], [16], [31], [35], [38], [40].hE

_tation Of synchronization primitives, u_sing s_oftwart_a _contolled key idea in such schemes is that software (usually a com-
invalidations and forced writebacks. This requires minimd hard- piler) identifies both the points at which data cached lgcall

ware support but gives less selective enforcement, whichfatts . o
performgffce. 9 may become stale and the data. Thself-invalidationsare

This paper proposes a novel hybrid software-hardware co- inserted by the software to purge such possibly stale date
herence mechanism. In this scheme software is responsiblebefore possible consumptions, as well fasced writebacks

for triggering the coherence actions — self-invalidationsand to push modified data to memory after possible productions.
writebacks — at appropriate times while hardware uses Bloom o the other hand, hardware assistance may be provided to

filters to perform more selective self-invalidations. . . e . A
We evaluate the proposed scheme on applications from two refine the identification of data for self-invalidations. €Be

different domains: the SPLASH-2 scientific and ALP multimeda ~ atteémpts, however, had significant limitations in that they
benchmarks. Experimental results show that while the softare- could only handle very simple data access patterns and were
only coherence scheme shows less performance degradatidrat only successfully applied to regular scientific and engiimge
expected it still unacceptably degrades performance for soe of applications.

the benchmarks. Filtering out unnecessary invalidationsmproves S . .
the worst-case performance by as much as 93%, and brings the Independent of its implementation using caches and hard-

performance of the hybrid scheme within 5% of full hardware ~Ware cache coherence, programming with the shared-memory
coherence for 10 out of 13 benchmarks, on a 32-core CMP with paradigm requires a clear definition of how memory operation
a shared L2 cache. to different memory locations can appear to interleave. For
Index Terms— Multiprocessors, Cache Coherence this purpose, memory consistency models are used and severa
have been defined. Arguably the most intuitive models for
programmers aresequential consistency (S@nd release
|. INTRODUCTION consistency (RC)Current standard programming languages

MALL- and medium-scale multiprocessors are now confahd language extensions provide models that are very simila
Smonplace, from single-chip embedded systems, desktdﬁsthese (OpenMP for instance uses a model very similar to
and workstations, to multi-chip servers and even game cdRC)-
soles. These multiprocessors provide a single addrese spacSince SC requires that all stores become globally visible
and are usually programmed using tileared-memonypro- before any of the following memory operations by the same
gramming model. The use of hardware data caches with ticessor, it greatly benefits from hardware cache coherenc
programming model leads to the problem of cache coherenB&: on the other hand, only requires that stores be performed

Traditionally, cache coherence has been enforced in haR&fore the completion of a release operation and, then, only
ware with coherence protocols. Snooping coherence was Y¥ih respect to the next processor to acquire the lock. Thus,
some time a straightforward mechanism to implement on t&@ntinuous cache coherence between synchronizationspoint
of shared buses. However, implementing snooping coherett¥ler RC is simply not necessary and may be overkill. In
in more recent technology requires much more complex ifact, the synchronization points under RC are fully exposed
terconnects both in the backplane [10] and on chip [23put such knowledge is largely ignored by current hardware
Alternatively, centralized directory coherence [19], [2&- coherence protocol implementations, which still assuna th

quires large centralized structures that are difficult talsc COMMunication of data across threads can happen at any
memory operation.
This work was supported in part by EPSRC under grant GR/SZ937 The main problem that plagues software-based cache co-
and by the EC under grants IP 27648 (FP6) and HIPEAC IST-08440 herence is that, for all but the most regular of applicatjons
T. Asbhy is with IMEC. Work performed mostly while author wasth . sepe .
the University of Edinburgh. is very difficult for the compiler and/or programmer to sgfel

P. Diaz and M. Cintra are with the University of Edinburgh. know what cached lines have to be invalidated at any paaticul

communication point. As a result, most software-based €admore threads access some program variable they all acaess th
coherence schemes either perform full cache invalida{®fs exact same memory location. When private caches are intro-
or selective but conservative cache invalidations [35]ctSuduced into the memory hierarchy, multiple copies of the same
indiscriminate or conservative selective invalidationsyntead variable may exist in one or more caches. If some of these
to the unnecessary invalidation of some cached lines aocapies are modified then threads will observe differenteslu
subsequent cache misses that degrade performance. Thef&eyhe same variable. This is known as the cache coherence
limitations of software approaches are the limitations ad-p problem, and making sure that this does not happen is the
gram analysis and unpredictable run-time behavior, irolgid responsibility of the cache coherence mechanism. However,
not only variable control flow but also speculative exeautioa coherence mechanism only serves to enforce a consistency
and hardware prefetching. Hardware support has been shawadel, which may require synchronization to fully specify a
to help reduce the amount of unnecessary invalidations-[11drdering on a set of memory accesses by different threads.
[13], [16], [31].

In this paper we revisit software-based cache coherente W \Memory Consistency Models

limited hardware support and propose a scheme that attackﬁ/I . e
N . ; emory consistency models specify in what order the
these limitations in two ways. First, the scheme performs

memory operations from different threads to different memo

invalidations only when necessary by_ Ievgragmg the.amnqocations may appear to the threads. In the most strict model
knowledge of true communication points in the applications

under the RC memory model. Previous software-based ése_quentlal consistency (SC), the memory operations from

proaches have also exploited such knowledge, but mos ifferent threads must appear to all threads in a singld tota

in the more restricted scope of DOALL and DOACROSS der, and aI;o the memory operations from a given thread
loops (.g., [11]-[13], [16], [31], [40]). Second, the soie MUSt @PPear in program order.
filters out some unnecessary invalidations of cache linegyus int A B int A B
a simple hardware mechanism based on Bloom filters that, struct lock flag; struct lock flag;
similar to the Bulk scheme [8], [9], [39], encodes the write A =8-=0;
sets of processors in a small signature. The contribution of acauire(flag);
this paper is to propose a software protocol, which is emhble parrier(); barrier();
by the_use of hardware support solely for the manipulation of it (pid==0) { it (pides1) {
such S|gnatures. A=1; acquire(flag);
The proposed Bloom filter based hybrid software-hardware . e ease(flag); B=A
scheme is evaluated and compared against both a simple (a) (b)
software-based scheme with full invalidations and a hardwa
cache coherence protocol. The study includes benchmagks 1. Example of synchronization under RC. Variables B, andf | ag
from two different domains — the SPLASH-2 scientific and@re shared.

ALP multimedia benchmarks — and considers two chip- i dels h b dth
multiprocessor (CMP) configurations. Experimental result Many memory consistency models have been proposed that

show that while the software-only coherence scheme sho{/%ax the ordering restrictions Of.SC' The ”_‘OSt rel_axed_rhode
less performance degradation than expected it still urpie:ce'S releasg co_n3|stency_(RC). Th's_ model differentiatesiape
ably degrades performance for some of the benchmarks. r_gy_nchronlzanon_operatl(_)ns - acquire and release - frormaor
tering out unnecessary invalidations improves the woasec memory _opgratlons. Figure 1 shows a prpducer-consumer
performance by as much as 93%, and brings the performaffg&munication pattern under RC. The ordering constraifits o
of the hybrid scheme within 5% of full hardware coherencBC @nd its use of explicit synchronization maps well to the

for 10 out of 13 benchmarks, on a 32-core CMP with a shar@§o9rammer’s expectations when high-level synchrorireti
L2 cache. sfructures are used.

The rest of this paper is organized as follows: Section Il
discusses cache coherence and memory consistency in more Il. SOFTWARE CACHE COHERENCE
detail; Section Il presents a baseline software-basethecac The idea behind the software coherence mechanism we pro-
coherence scheme; Section IV presents our Bloom filter bageake for release consistent applications is to allow reads a
selective invalidation scheme; Section V describes out- evavrites to shared data in private caches and enforce coherenc
uation methodology; Section VI presents the experimentl synchronization points. This is done by invalidatingheac
results; Section VIl discusses related work; and Sectiokh Vlines when the processor reaches an acquire or a barrier (aft
concludes the paper. writing them back if they are dirty), and by writing back dirt
cache lines when the processor reaches a release. The lines
II. THE SHARED-MEMORY PROGRAMMING to invalidate or write back are determined by a conservative
MODEL approximation of preceding stores that will communicat&ada
to another processor (writebacks) and future loads thdt wil
receive data communicated by other processors (invatidsl}i
In the shared-memory programming model all threads sharBe simplest, most conservative approximation is to inelud
a single virtual address space. This means that when twoadlr dirty lines in the writeback set and the whole cache in

A. The Cache Coherence Problem

the invalidation set. Barriers are implemented using lcamkd back caches is to add a dirty bit per byte, and only write back
result in a combined acquire and release for all processorsmodified bytes when a line is evicted. This scheme comes with
Reads and writes between synchronization points will gers 12.5% area overhead for the dirty bits. We consider both
erate incoherent cache lines. The invalidation of cach¢alala approaches in the evaluation.
acquires and barriers guarantees that in the future thedhre
will obtain, through cache misses, the up-to-date versibn o
data after it is allowed past a barrier or into a critical g@tt
For instance, the invalidation of cached data at the acduireA. Overview
Figure 1b will purge the stale value & and the load after Invalidating the whole cache at acquires is clearly too con-
the acquire is guaranteed to be a cache miss. The writebgekvative. Ideally, we would like to invalidate in the preser
of cached data at releases and barriers guarantees thataidwuiring the lock only the cached lines that are involved in
thread will update memory (or some shared lower-level cachgue communication. These correspond to cached lines that
with its latest version of data before it exits a critical t#®¢ have been modified by any processor that has held this lock
or passes a barrier. For instance, the writeback of cache@viously and that are subsequently read by the processor
data at the release in Figure la will send the new valagquiring the lock. The second condition requires knowtedg
of A to memory before the lock can be released. Finallgf the future, but exploiting it is irrelevant as lines thag aot
the sequential consistency of acquires and releases cethbiread after the lock acquire may as well be invalidated. BExplo
with RC’s contract that true sharing can only occur acrossg the first condition, however, may save future unnecgssar
synchronization points guarantees that no thread will eviglise coherence misses. Obviously, individually iderigyall
consume a stale version of data. Thus, the loadAddfter lines that have been modified by the processors that have held
the acquire in Figure 1b is guaranteed to return the new valgach lock is impractical. An intermediate solution is toritify
of A=1. a superset of such lines. This superset should be tight énoug
While the idea described above seems straightforwatd, be a good approximation of the ideal set and its encoding
there are three difficulties associated with it. Firstly,amh should be efficient enough to be manipulated in hardware. It
using a conservative approximation there may be performanfust also be a true superset, meaning that it may includs line
degradation due to harmful coherence cache invalidatibnstlaat have not been modified but it must incluale lines that
barriers and acquires. In Section IV we describe our Bloofmve been modified.
filter scheme for selective invalidations. A second diffigul Bloom filters [7] provide such an efficient superset encod-
associated with the scheme is that, as described, it daeg. Basically, these filters are a space-efficient proltiul
not work when multiple threads write to the same cach#ata structure that can be used to test whether an element
line between synchronization points (false sharing). Tikis is a member of a set. False positives are possible, but false
because there is no way of identifying which words or bytasegatives are not. They are space-efficient because the re-
have been modified by a thread and so it is not safe $alting signature is much smaller than a complete and exact
write back the whole line as unmodified bytes may overwrit@presentation of the contents of the set.
modified bytes previously written back by a different thread What we propose then is to use Bloom filters to perform
Note that this problem applies to all writebacks, not onlg thselective invalidations to assist a software cache coleeren
software managed forced writebacks at synchronizationtpoi mechanism. The basic idea of the scheme is as follows.
A solution to this problem is described below. A Bloom filter based write-set signature is maintained in
A third difficulty relates to synchronization. Most lockhardware in each processor and is updated at each store to
algorithms nowadays use spin-waiting on a cacheable vatie cache (or cache miss) using a portion of the line address.
able, relying on the cache coherence mechanism to flag ¥ signatures are empty at the beginning of the program.
existence of a modified value. Relying on forced writeback&/e call these signatures th®ocessor-side signatureg\t a
and self invalidations to support spin-waiting is possililet lock release the processor’s signature is written to a mgmor
clearly sub-optimal as a whole cache invalidation would Hecation associated with the particular lock. This is thek-
performed when clearly only the line containing the lockide signature At a lock acquire the lock-side signature of
variable needs to be invalidated. Instead, with a softwatiee lock being acquired is read from memory and is used
coherence mechanism it makes more sense to modify the the hardware to selectively invalidate the local cache.
synchronization algorithms to use non-cacheable varsedobel This signature is then merged (union) with the processor’s
backoff mechanisms to avoid too frequent retries. A similaurrent write-set signature in order to provide the tramsit
problem occurs with barriers, which commonly signal theommunication defined by locks.
release via spin-waiting on a cacheable variable and aaegul Barriers are implemented in software using locks and are
store to this variable. In this case it also makes sense tagep mostly handled by the mechanism just described for locks.
these regular loads and stores with non-cacheable ones. In fact, implementations of barriers use a lock that must be
Addressing the second difficulty described above — that aEquired by each processor to enter. Hence, after all psoces
correctly handling false sharing — completely in softwase ihave entered, that lock carries the signature of the complet
difficult. The simplest hardware approach is to use writgglobal write-set for the program so far. This signature damnt
through caches, but this comes with an associated perfaenabe used to selectively invalidate all caches just beforemasg
cost from extra write transactions. An alternative for w#it work past the barrier. At this point the barrier can be redels

IV. BLOOM FILTER BASED SELECTIVE
SELF-INVALIDATION

The size of a write-set may grow very large over the courd 2. These operations, however, are invoked by the software
of execution of the program. Hence, sighatures may becotheough a new assembly instructio®] G NVAL. This in-
saturated (i.e., all bits are set and, thus, membershig testruction takes no argument and always uses the value in
always return true). In theory, any write that has been se®$l & as the mask for the invalidations. We also propose
by all processors can be removed from all write-sets astd@ use dedicated hardware under software control to perform
no longer has to be protected. This would be difficult to dthe union of signatures, which is required after the cache
since Bloom signhatures do not support removal of individu@lvalidation upon a lock acquire, as described in Section 1V
elements. However, all signatures (processor-side ankt loB.3. This union operation of Bloom filter signatures is a
side) can be reset to empty any time when all writes so fatraightforward bitwise OR operation and will only take a
are visible to all processors. This condition naturally wrsc fraction of a processor cycle. The instruction to invokesthi
at barriers. Thus, we clear all signatures just before aidrarroperation is named/RGSI G and takes no argument, always

is released. assuming that the value IRSI & is to be merged with that
_ . in RSI GL and stored irRSI GL.
B. Implementation Details A final architectural extension required to support the

1) Hardware Write-Set Signature RegisterMaintaining scheme is an additional assembly instruction used by the
and manipulating the write-set signatures completely ift- sosoftware routines to reset the two signature registers. &iveen
ware would incur too high an overhead as each applicatighis instructionRSETSI G
store would have to be augmented with possibly multiplegoad In summary, transferring write-set signatures between pro
(depending on the size of the signature) to obtain the ctirre@ssor/cache and memory is done in hardware under software
signature from memory, some computation to encode the neantrol, as is using signatures to perform the selectivalinv
signature, and multiple stores to save the new signaturk balations and resetting signatures. Updating the local gsmre
to memory. Thus, we propose to use hardware assistanceigle write-set signature, on the other hand, is transpigrent
this operation. handled by the hardware.

In our proposal the write-set signature for each processor2) Hardware Selective Cache Invalidationsigure 2 de-
is stored in an architecturally visible register, similarwhat picts the hardware required to perform all the relevant sig-
is done in [39]. This register can be located in the processoature operations in our scheme. Figure 2a shows the high-
core itself or in the L1 cache controller, depending mostlgvel organization of the hardware for performing the stiec
on the choice of address bits used to generate the signatimealidation at lock acquires and barriers (Sections 1'3-Bnd
Being architecturally visible, this register can be addessby 1V-B.4), the union operation at lock acquires (Section N3B
software and its contents can be loaded from and storedaiod the signature update at each cache write miss (Section IV
memory as necessary. Naturally, such loads and stores nBa§). As we can see from this figure, the major hardware
involve several words as the signature is likely to be in theost comes from the hardware for performing the selective
order of a few hundred bytes in order to achieve reasonalgier-line invalidations. Each circuit for selective invdtions
selectivity. We name these assembly load and store in&insct amounts to a DECODER and a number of 2-input AND gates,
LDWBlI GandSTW8I G, respectively, and the processor’s writeas can be seen in Figure 2b. Each DECODER is similar to
set signature registeRSI G1. In addition to this register, those found in memory address decoding circuits and many
our scheme requires a second signature register where dpéimization techniques from that domain can be applied,
signature from other processors can be stored tempor@kilg. such as predecoded pairs of bits and dynamic logic. In the
register is also architecturally visible and we namB® 2. worst case each DECODER can be implemented as shown

Updating the write-set signature involves simple binary Figure 2c, using large fan-in AND gates or, alternatively
logic and shift operations, but on a possibly wide datapath.tree of low fan-in AND gates. In either case, the cost of
We propose to implement this operation in hardware usirigje hardware for selective invalidations is proportiorathe
dedicated logic. This logic is placed next to tR&l GL and number of such circuits that are used in parallel. The dimgra
RSI G registers so that it can operate on them. Updatés Figure 2a shows an aggressive implementation with one
occur on every application store or only on every cache writgrcuit per cache tag.
miss, again depending on the choice of address bits used t®@ne alternative to reduce this hardware cost is to group
generate the signature. As we chose to ignore address bitsd@che lines and to time-share a single selective invatidati
the byte-offset portion of the address, our scheme only tgsdahardware per group and, thus, sequentially process eaeh lin
RSI GL on cache write misses. Also, for the hash functions that a group. This optimization trades off hardware costs for
we study in this paper the encoding operation amounts toadarger performance cost for the selective invalidatiofns.
traditional N to 2V DECODER which in current technology estimate that the time for the circuit in Figure 2b to process
will only take a small number of a processor cycles. Besidesie cache tag is small enough that it is reasonable to assume
being inexpensive, this operation can be performed in [gdrala single invalidation logic per cache set in a 2- or 4-way set-
with the memory lookup. Thus, we do not expect this operati@ssociative cache. It is worth noting that while the harawar
to affect either the hit or miss latencies, for both loads artescribed above may not be much cheaper in terms of silicon
stores. cost as that of a coherence controller, the benefits we aim for

To perform the selective invalidations of cache lines ware in terms of design and verification complexity, not sitic
rely on dedicated hardware, which is described in Section I'drea. The logic described above is simple and local to each

dirty L RSIG2 tag R

data bits \ | : ti }%
P : i+1 :
o

signature oee : Dﬁ
% $ |+N 1
Al Dﬁ
L) " 4 :
S|gnature t'

From cache miss
handling unit

: D Added state O Added logic

k?ﬂ Membership test | U | Union computation R % o :
Lt: Update computation j . signature

@) SR
(b)

Fig. 2. Proposed architectural extensions: (a) overviewhefarchitecture for the selective invalidation (used aklacquires and barriers), union operation
(used at lock acquires), and signature updates (used a¢ eaite misses); (b) mechanisms for performing the sigmaturion, membership test, and signature
update; and (c) simple circuit for decodirg bits from the tag into 2% bit signature.

processor and does not involve a complex protocol. registers (Section 1V-B.1). The lock acquire routine issgxted

As the hit latency of upper level caches is commonly ot® instruct the hardware to load this write-set signatusejse
the processor’s critical path, it is important that the heace it to perform the selective cache invalidations, to mergeiib
additions proposed do not increase this latency. The patenthe local processor’s write-set signature, and to storadkio
problem is that the circuit used in Figure 2b presents araexthemory. Figure 3a shows (in a mix of C and assembly pseudo-
load on the cache tags. However, we note that the outputGside) this extended acquire routine for the simple algorith
this circuit is not needed for the cache accesses. Thusgin fased on spinning with exponential backoff [30]. Similarly
case that this extra load may impact the tag checking latentiye lock release routine is extended to instruct the harewar
one can simply place this circuit in series with the normdp load the lock's write-set signature, to merge it with the
tag checking logic, and out of the critical cache hit pathocal processor's write-set signature, and to store it biack
Also, the selective invalidation circuit shown in Figure ®a memory. This is shown in Figure 3b. Note that reloading the
only activated at synchronization points and, thus, alsorfta lock’s write-set signature on a release is necessary inrdede
impact on normal cache operation. support nested locks.

3) Lock Acquire and ReleaseOne of the key ideas in Other, more complex, lock algorithms can also be used
our proposal is to rely on the software to decide whe¥yith the proposed hybrid software/hardware cache coherenc
communication has to occur and what the set of processdrs thgchanism. The key to porting such algorithms to work with
are involved is. As explained in Section Ill, this is achigvethe proposed mechanism is to make all the data structures use
by leveraging the high-level information provided by the R&® communicate state in the algorithm (e.g., the array dfslo
memory consistency model. In order to potentially reduee tffnd the “next slot” index for the array-based queue lock al-
impact of cache flushes, what we propose is to augment @@'ithm [30]) non-cacheable. Another important consitlera
lock and barrier software data structures with additionafew IS that, as already mentioned, all spin-waiting should beedo
set signature information, and their software routinesiwiide With some backoff mechanism to avoid too much traffic.
to direct the hardware to manipulate and use these sigmsature We envision that these changes only need to be applied to

Each lock is potentially associated with a communicatidf® Synchronization library and no change is required to the
chain and the data modified under its protection can B@Pplication. Finally, note that writebacks are still penied as
associated with a write-set signature. We extend the lock dgescribed previously for the software coherence mechaitism
structure with a field where its associated write-set sigreat Section IIl.
can be stored. This field consists of multiple words and 4) Barriers: Barriers are usually implemented in software
hardware support is required to load and store it into hardwausing a small number of locks and counters and many different

struct lock flag; struct |ock flag;

void acquire(lock thisflag) { void rel ease(l ock thisflag) {
/* original |ock acquire code */ |+ added code for writeback */
/* thisflag is non-cacheable delay is priv. */ __asm_ ("FLUSHD");
while (test_and_set(thisflag) == LOCKED) {
pause(del ay) ; /+ added code for updating sig. */
del ay = del ay*2; __asm _ ("LDWBI G RSI &, thisflag.wsig"
} "MRGSI G'
"STWSI G thisflag.wsig, RSIGL");
[~ added code for select. inv. x/
__asm _ ("LDWBI G RSI &, thisflag.wsig" /+ original |ock release code */
"SI G NVAL" I+ thisflag i s non-cacheable */
"MRGSI G' thisflag = UNLOCKED;
"STWSI G t hi sflag.wsig, RSIGL"); }
}
(a) (b)

Fig. 3. Pseudo-code for lock acquire (a) and release (b)enptoposed hybrid software/hardware cache coherence mieohaThe base algorithm is the
simple spin with exponential backoff [30]. ThH&.USHD instruction is equivalent to the Spat. USH instruction but operates on the data cache. The example
assumes aest _and_set primitive, but other hardware primitives could be used éast

algorithms have been proposed (e.g., [30]). Basically, attsumes execution after the barrier (Figure 4).
algorithms involve acquiring a “check-in” lock, updatingrse Resetting the lock-side write-set signatures of all thé&k¢oc
shared state, releasing the lock(s), and then waiting oresois somewhat more involved. First, the synchronizationdrigr
global release variable. These algorithms work correcilgny code for barriers must be able to identify all the active lock
system that correctly implements locks and cache cohereneariables in the application. To support this we augment the
including the software scheme with full cache invalidasonlock declaration or initialization code with extra insttioms
described in Section Ill. Using the signature-based sekectto add the lock to a dynamic linked list of locks. For in-
invalidation, however, requires a small change to the barristance, pthreads requires that all locks be initializedth(wi
routine. pt hr ead_nut ex_i nit ()). We then augment the barrier
The problem is that as processors arrive at the barrier aralitine to traverse this linked list and reset all the loakes
obtain the check-in lock, they observe a signature that@eso signatures, by storingaul | value in them (with &RSETSI G
the cumulative write-sets of all processors that have presly and a series oSTWSI G). This operation only needs to be
arrived at the barrier. Thus, only the last processor tovarriperformed once, so we make it the responsibility of the last
observes the complete signature. To correct this problem agiving processor, and it is done after producing the leatri
modify the barrier routine in two ways. First, we add a&ide signature and just before releasing the other processo
new barrier-side signature stored alongside the barrier datgFigure 4). Note in Figure 4 that it is not necessary to rdset t
structure, that is produced by the last arriving processargl barrier-side signature at any point, as it is overwrittertha
the lock-side signature of the check-in lock merged with itsarrier's next instance. This operation may appear exgensi
own processor-side signature. As with the lock-side signest but in practice most applications only use a relatively $mal
this barrier-side signature is computed by hardware logic bnumber of (static) locks. Moreover, the frequency of global
under software control, which requires augmenting theidarr barriers is low enough and their base cost already high émoug
code executed by the last arriving processor. Second, et the performance impact of resetting the lock-sideensit
augment the barrier code so that a processor’s first actioa omsignatures is likely to be small in practice.
the barrier is released is to load the (now updated) barrier-5) Hash Function: Bloom filters use a number of hash
side signature and to use it to invalidate its own cache. ®gafunctions to map set elements to positions in a bitmap.
this is done with hardware logic but under software control.he number and behavior of these functions depend on the
Figure 4 shows (in a mix of C and assembly pseudo-codajended use of the Bloom filter. An important design con-
the extended routine for a simple sense-reversing cexdxdli straint in our case is that because these functions must be
barrier [30]. Again, more complex barrier algorithms can bienplemented in hardware they must be relatively simple and
extended to handle the signatures and the key consideratiast. We have found that using just one function that exract
for the extension is to make the data structures used by tteztain bit slices from the memory address performs well
algorithm non-cacheable. enough on our test workloads. For a write-set signature of
One important property of barriers is that they represedf bits (K = 11 in our experiments), we extract a slice of
application points where all threads must observe exah#y t/K contiguous bits from the write address. Our experiments
same state of the shared memory. Our scheme guaranteesshatved that different slices can lead to significantly défe
this is the case by ensuring that all shared data is not caclsedectivity rates. In particular, we noted that bits in thieldihe
anywhere. As no shared data is cached at this point it a6 the address give far better results. These middle bitbef t
safe to reset all the write-set signatures, both the processaddress contain the page number the address belongs tg. Usin
and lock-side ones. Resetting all the processor-side ‘sete these bits provides good selectivity between private aadesh
signatures is triggered by the software barrier code byirigsu memory pages in threads.
a RSETSI Ginstruction as the first operation once a processor We also tried signatures that encode the exact set of cache

struct barrier_t barrier; TABLE |

barrier.count = P SUMMARY OF HARDWARE EXTENSIONS REQUIRED BY THE PROPOSED

barrier.sense = TRUE; HYBRID SOFTWAREHARDWARE CACHE COHERENCE SCHEMETHE COSTS
private int |ocal _count;

private int |ocal sense = TRUE: FOR SIGNATURE UPDATE AND MEMBERSHIP TEST ASSUME A SIMPLE

DECODERLOGIC AND COULD BE OPTIMIZED. THE COSTS FOR
void central _barrier() {
/+ toggle own sense */ MEMBERSHIP TEST ARE FOR EACH INDIVIDUAL CIRCUIT
I ocal _sense = !local _sense; (SECTIONIV-B.2).

/* check in to barrier */

acquire(barrier.check_in); -
| ocal _count = barrier.count--; ” Extension ” Cost ”
rel ease(barrier.check_in); [Instruction Set [
/+ check if last processor =/ [[5 new instructions || Negligible [
if (local _count == 1) { [SRAM I
I+ added code for |ock-side sigs. */ Dirty bits per byte 8 bytes per cache line
reset _| ocksi desi gs(); (64byte lines)
[+ reset barrier for next instance */ 2 S|g_nat_ure registers 512 bytes total
barrier.count = P (2Kbit signatures)
barrier.sense = | ocal _sense; || Logic ||
/+ added code for barrier-side sig. */ (SZigKrt])EiittLéEgnLejirt]Liﬁgs) 2048 2-input OR gates tota]
__asm_ ("MRGSIG' -
"STWSI G barrier.wsig, RSIGL"); Signature update 11 NOT gates +
} (2Kbit signatures) 1100 2-input AND gates +
else {) 2048 2-input OR gates tota|
I+ wait for barrier release «/ _ Membership test 11 NOT gates +
(A,;i fi”?ﬁe'nie”?? fiEZFaELﬁs‘e’)e' ?y ts priv. +/ (2Kbit signatures) 1100 2-input AND gates +
pause(del ay); - 2048 2-input AND gates

del ay = del ay*2;
}

/* added code for sel. inv. */
asm ("FLUSHD" _ o use of synchronization to access their key data structures i
e ! G2, barrier.vsig a parallel environment. While porting them to the proposed

"RSETSI G') ; scheme is likely not a trivial endeavour, it is facilitategt b
} } the fact that they are usually maintained by a relativelylsma

number of programmers who have a deep understanding of
Fig. 4. Pseudo-code for sense-reversing centralizedeodB0] with write- the code and the requ'red SynChromzat'on points.
set signatures. The procedureset | ocksi desi gs() resets all the lock Also, the proposed scheme does not require any special
side signatures and is omitted in the interest of space. compiler or OS support, but it can potentially benefit from
some assistance. The OS could help, for instance, by placing
- . .the private data of different threads in pages that will diatsa
set indices as suggested in [8], but found that they provwre'z P bag

- g . under the hash function used by the hardware. The compiler
no selectivity at all in our case as every set in the caches |s

touched by a store operation to a line that mans to it could help, for instance, when applications do not use &esri
y P P ' often, which can lead to signature saturation. In this ctee,

compiler can find appropriate points in the program to insert

C. Discussion safe barriers. We leave a study of OS and compiler support
1) Hardware Costs:Table | summarizes the hardware exfor the proposed scheme as future work.
tensions required by the whole scheme. 3) Potential Difficulty: Adoption of Relaxed Modelsor

In summary, the hardware extensions required by the whalar scheme to be efficient, communication must be infrequent
scheme we propose amounts to: 1) 5 new instructions; 2)a8d must be clearly marked. Applications designed for RC
bytes per cache line for dirty bits; 3) 512 bytes for the 2nd some other relaxed models meet these requirements, but
signature registers; 4) 2048 2-input OR gates for the sigeat applications designed for other memory consistency models
union logic; 5) 11 NOT gates, 1100 2-input AND gates, anehay not. Thus, the scheme depends heavily on the adoption
2048 2-input OR gates for the signature update; and 6) 11 N©f relaxed memory consistency models.
gates, 1100 2-input AND gates, and 2048 2-input OR gatesRelaxed memory consistency models were originally in-
for the membership test per group of lines (Section IV-B.2)toduced mainly because of better performance with respect
These numbers assume a 2Kbit signature. to SC and because they are arguably easier to implement

2) Compiler and OS SupportDoing away with hardware in systems with complex memory hierarchies [3]. Later it
cache coherence has obvious implications for legacy sharegs noted that aggressive dynamic instruction scheduhing i
memory parallel programs. However, properly synchronizgatocessors could close a large fraction of this performayaqe
programs, especially those that use calls to a synchraaizatwhile still providing a tight memory model to the programmer
library should be easily ported to the hybrid software-lwaae which led to the suggestion that this should be the case [17].
cache coherence scheme proposed here. One potentially diffiis approach, however, has only been implemented in one
cult case is that of multithreaded OS’s, which make intemsiprocessor, the MIPS R10K. The suggestion was based on the

. . . TABLE I
assumption that SC is a better memory consistency model from
. . . . (A)APPLICATIONS USED THE TOTAL NUMBER OF DYNAMIC LOCK
a software engineering perspective. However, many believe
. . AICQUIRES IS FOR16 PROCESSORS AND DOES NOT INCLUDE RERIES. (B)
that most programmers have neither the skills nor the tools
. . . . PARAMETERS OF THE MEMORY SUBSYSTEM MODEL
to safely use handcrafted communication and synchropizati

that relies on the st_rict prderil_wg of memory operqtions isgzb Benchmark|| Dyn. Barriers | Dyn. Acq.| Cycles/Sync.
by SC, thus negating its main purported benefit. water-nsq 20 1102 330K

While the debate is still open on what memory consistency water-spt 20 19 8.1M

. . ocean-ncp 870 207 423K
models the architecture shpuld provide and what m_odels ocean-cp 900 507 507K
programmers should see, in the end what matters is the raytrace 1 3,037 1.6M
models used in de-facto standards for parallel programming “’;d'os'ty 221 3324'(7);9 ;693*;
. . e . arnes)
environments. For scientific HPC the Iea_lder_ is OpenMP, _and volrend 50 3660 SAIK
for embedded, desktop and server applications the dominant mm 33 6,549 736K
models are Java, and POSIX threads. The consistency model facerec 3 0 2.8M
of OpenMP is only slightly less relaxed than RC in that it mgggﬁg 18 8 ;gm
does not allow Ioads. to cross below a release or stores to SPRINX3 7593 54,151 TIEK
cross below an acquire. As such, our scheme can be easily S =
ded to work with it by the addition of memory fences to I arameter | e I
eXten_ € y y No. of cores 1to 32
acquires and releases. The memory model for POSIX thread Core freq. 2GHz
libraries is deliberately informal, but essentially comfts to Issue width 1, in-order
RC in that all communication must be protected by calls to |I__11|I__22 :':;égﬁf; gf‘w';?' 42_v"c:‘y
synchronization routines. Thus, our scheme should work "ou L1.L2 line repl. policy LRU, LRU
of the box” with POSIX threads. The Java memory model is L1L2 line size (bytes) | 32 byte, 64 byte
much more involved than those for C, but in essence it also L1,L2 latency (cycles) 3,15
Memory latency (cycles) 200

requires that programs use explicit synchronization. lgina

a trend in recent programming languages is to use “atomic”
blocks (e.g., [4], [15]), which also fit straightforwardlyitiv

our proposed scheme.

B. Simulation Environment

We built our simulators on top of the SPARC target
simulator of Virtutech’s Simics [29]. The baseline Simics
simulator models an in-order single-issue processor uiag
UltraSPARC I+ instruction set. This simulator does not

For our quantitative performance analysis we use all niﬁgodel the r_nicroarchit_ecture in detail, but we extended the
SPLASH-2 application benchmarks [41] and four ALPBenchimulator with a detailed model of the cache and memory
benchmarks [27]. The SPLASH-2 benchmarks are represerﬁ'sleYStem- While not modeling the.m|croarch_|tecture irailet
tive of scientific and engineering workloads while the ALPd0€S introduce some errors, we believe that differencesajue
Bench benchmarks are representative of multimedia worl@" instance, pipelining, operand bypass and branch piedic
loads. We built both benchmark suites using POSIX thread@n be considered as secondary effects when compared to the
with explicit locks and barriers implemented using custorfihing impact of the memory accesses.
assembly code (including all the instructions necessary to
manipulate the lock- and barrier-side signatures). The AL®. Designs Evaluated
benchmarks were optimized so that they created one set ofn our evaluation we concentrate on CMP systems with 32
threads during the initialization phase rather than regmigt processors. Consistent with the current trend toward CMP’s
setting up and tearing down threads during the course of tiéh many, but simple, cores, we assume cores with a rel-
program. atively low clock rate of 2GHz and with single issue in-

We used the reference inputs for the SPLASH-2 bencbrder pipelines. We perform experiments with systems from
marks. Only 20 frames from the test file are used fdwo different design domains: a future embedded CMP with
MPGDEC/ENC to reduce simulation time. Because the inpptivate write-back L1 data caches and no globally shared
sets for the ALPBench benchmarks were not intended t@ (such as Tilera’s Tile64 [5] and Intel's SCC [18]), and
be used with more than 16 processors, we do not simuladuture desktop/workstation CMP with private write-thgbu
larger systems for these benchmarks. For all benchmaitks data caches and a shared write-back L2 cache. The reason
we only consider the execution time of the parallel regiofior including both is to assess the impact of the cost of
i.e., after initialization and before cleanup and printiof reloading self-invalidated data, which is an order of mag-
results. Table 1l lists the benchmarks we used, their inputsitude different between an on-chip shared cache and main
the number of dynamic barrier occurrences, the number wiemory. Arbitrators for memory transactions are impleraent
dynamic lock acquire occurrences, and the average numbeusing separate request and response transactions. The on-
cycles between two successive synchronization points. chip interconnect from L1 to L2 cache is 32 byte wide and

V. EVALUATION METHODOLOGY

A. Applications

35
3
25

atlilisnty

F & &L S &
&6 & S
FSEFSSE S

runs at the same frequency as the processors. The off-¢
memory bus is one quad-word wide (16 bytes) and also ry
at the same frequency. Contention is modeled in detail on
interconnects, properly accounting for the overheads ef {
forced writebacks. We used exponential backoff for the lo
acquire spin-wait. Table Ilb shows the processor and systerm
parameters used in the simulations. @) (b)

For comparison we model CMP systems with full hardwarngg, 5. Execution time for 32/16 processors normalized tadiware
coherence using an MSI snooping protodad\y-MS), with a coherence: (a) no L2 configuration, (b) configuration witlarehl L2.
baseline software coherence scheme with full self-inedi@hs
(stw-Fullinv), our proposed hybrid software-hardware scheme . .
with selective self-invalidationshgb-Bloominy, and an ideal ©f processors in the system from 2 to 32/16. Figure 6 shows

software-based scheme with perfect selective self-idutibns the performance results, again normalized to thata#é-MSI
at lock acquires and barrierSérfiny). As can be seen from this figure, this relative performance is

With hyb-Bloominwve model in detail the latency to loagmostly independent of the number of processors, at least up
and write the signatures from memory, as these operatidfs32/16 processors.
were added to the assembly code of locks and barriers. As
for the hardware operations shown in Figure 2, we assurBe Invalidation Behavior

that all operations take one cycle for simplicity (as disads The success of the proposed scheme depends mainly on

in Section IV-B.1 only the encoding operation would takg,, factors: the fraction of the cache that is invalidated

Ionger,_ but it can still be e_asily overlappe_d with the _m‘c_"moréfnnecessarily at each synchronization point and the fregue
operation for the update signature operation and its imjpact synchronization points. Figure 7 shows, for all appiicas,

the, already expensive, synchronization operations i®&®0l e “fraction of the caches that is invalidated for signature
to be_mln!ma!).We assume on§|nval!dat|on logic per cache Ring different ranges of bitsb[X-Y]), and for the ideal
and invalidations proceed serially with all overhead prope ¢5qe [deal). The numbers are for a single execution interval

accounted for. between two barriers. We noticed that for all applicatidms t
invalidation behavior is very similar across all such intds.
VI. EXPERIMENTAL RESULTS As can be seen from this figure, the best signature across
A. Overall Performance all applications isb[24-14], which simply decodes 11 bits
Fi 5 <h for all licati h ; of from the physical address starting from bit 24 to bit 14,
Igure 5 shows, for all applications, the performancef- ., jye. Further, to assess the impact of signature sige w
Fullinv, hyb-Bloominy and Perflny, for 32 (SPLASH-2) and g0 g signatures with 1024 and 4096 bits, encoding bj3-

16 (ALPBench) processor systems, relative to thathdiv- 141 andbl25-141 respectively. The results showed thé®5-
MSI. As can be seen from this figure, the simglv-Fullinv] [], respectively. y wed thi?

Normalized Execution Tims
% © 5 o~ B
s,
%,
h/
s,
%,
%,
)
N
%
ko
%,
L3
o,
£
%,
Yy o,
22
2,
2%
Yoy

Normalized Execution Time

& &P
2§

BPerfinv Bhyb-Bloominy Dstw-Fullinv BPefiny Bhyb-Bloominy _ Dstw-Fulliny

ever, despite its overall reasonable performarste;Fulllnv read and written to memory we believe that the basdi{ad-
performs unacceptably poorly for some applications: up Tf4] offers a good design point
298% performance degradation for systems without L2 and '

up to 215% performance degradation for systems with sha
L2. Our proposed Bloom filter based hybrid schentghb
BloomIny is able to improve performance ovetw-Fullinv
by as much as 93%, and 15% on average, for systems with

100

80
60
40

Invalidation Rate

L2 and by as much as 40%, and 5% on average, for syste 2 m

with shared L2, significantly closing the gap. The perforoean o MIMNNINANTN LI LR
gap betweeinyb-BloomInvand hdw-MSlifor systems without e \é,«s‘ & & & &@@’ € & E
L2 is between -6% (i.e., speedupylPEG.end and 130% & &g S e e T SEEE
(raytrace), and 36% on average. The gap is between -1 ‘ Bb[28-18] Ob[26-16] Ob[24-14] Wb[22-12] Bb[20-10] Db[15-5] Mideal

(i.e., speedup)MPEGeng and 100% i@aytrace, and 11%

on average, for systems with shared L2. More importanthy, thrig. 7. Invalidation rates for different signatures.

gap is less than 5% for 10 out of 13 applications, for systems

with shared L2. Moreovehyb-BloomInwerforms very close To put this invalidation fraction within a perspective of

to the idealPerflny, with a performance gap between 0%execution progress, Figure 8 shows, for a representatlee-se

(MPEG.eng and 107% ¢cean-ncp, and 20% on average, fortion of applications (due to space limitationdmm facerec,

systems without L2, and between 0% and 25%, for systetlPEG.dec and MPEG.enc behave similarly towater-spt

with shared L2. water-nsq raytrace volrend and sphinx3 behave similarly
To assess the relative impact of full and selective selie barnes and ocean-ncpand radiosity behave similarly to

invalidations for different system sizes, we vary the numbecean-cp, the fraction of the caches that is invalidated for

10

25 — 25 35 e

15 15 2 e 5

05 05

05 05

MPEG_dec
Number of Processors Number of Processors. Number of Processors. Number of Processors MPEG_enc

(@) (b)

Fig. 6. Execution time for varying number of processors ralined to hardware coherence: (a) (leftmost 2 charts) Bldiier based selective invalidations
without L2 (left) and with shared L2 (right), (b) (rightmo&tcharts) full invalidations without L2 (left) and with st L2 (right).

signatureb[24-14] (hyb-BloomIny and for theideal case. synchronization points (often simply the boundaries objial
Unlike Figure 7, the numbers in this figure are for all synehrdoops). Additionally, to filter out unnecessary invalidats,
nization events (lock acquires and barriers) for a repriegéie such schemes relied on the programmer [35], [37] or the
execution window of 50M cycles (again, we did not observeompiler [11], [12], [14], [31], [38], [40] to identify what
much variability across different windows for any given ben data is involved in the communication and, thus, must be
mark). Looking at this figure, at the relative performanaes written back and invalidated. Such schemes, however, were
Figure 5, and the rightmost column in Table Il we can see threaly applicable to very regular array- and loop-based codes
types of behavior. In the first type of behaviowater-spt— where static analysis can identify a tight super-set of the
synchronization is fairly infrequent afiyb-BloomImachieves communicated data or when the programmer can clearly
performance very close to the ideal invalidation coherenspecify critical sections and their data.
and somewhat close to the hardware coherence, regardless Gome previous works, similarly to ours, have proposed addi-
whether it tracks the ideal invalidation rates closely otk.notional hardware support to assist with the actual invaiatet.
In the second type of behaviorbarnes— synchronization is Closest to our work, both [12] and [31] rely on generational
frequent, buthyb-BloomInvtracks the ideal invalidation rate behavior of shared data along synchronization points. They
closely. In this caséyb-Bloominvends to still perform very use per-word version/timestamp tags updated by software to
close to the ideal invalidation coherence and somewhatcladentify cache lines that do not have to be reloaded after a
to hardware coherence (the exceptiomagtrace which has a synchronization point. The earlier work in [11] used a singl
very high synchronization frequency and all but the hardwabit to differentiate data versions between two generations
coherence scheme perform poorly). Finally, in the thirdetypand it was later extended in [13], [16]. However, unlike our
of behavior —ocean-cp- synchronization is also frequent andvork, those require complex program analysis to statically
hyb-BloomInwdoes not track the ideal invalidation rate closelynanage the update of the version tags. As a result they were
In this casehyb-Bloominvdoes not perform as closely toonly successful in programs with simple control flow (often
the ideal invalidation coherence or hardware coherence, IROALL and DOACROSS loops) and regular array accesses.
it still leads to significant performance gains ogtw-Fullinv. Also, the tag overhead in the caches is much higher than the
Comparing results with the first and third behaviors we can severhead of our signatures.
that the frequency of synchronization events has a significa Hardware and software self invalidatiorSelf-invalidation
impact in the performance diyb-Bloominvand comparing of locally cached data has been proposed as a mechanism
results with the second and third behaviors we can see #ereduce the amount of coherence transactions. Both hard-
performance impact of how wellyb-Bloominwracks the ideal ware [24], [26] and compiler-directed [33] schemes havenbee
invalidation rates. proposed. Those schemes differ from ours in that they are non
We did experiment with signatures that encode the exact g&hact and they still rely on hardware coherence mechanism to
of cache set indices as suggested in [8]. We found, howevefisure correctness.
that this provided no selectivity at all as every setin thehes Bjoom filter-based bulk invalidationThe idea of using
is touched by a store operation to a line that maps to it. Tgoom filter based signatures to encode a thread’s read- and
difference between our negative results with this teche@od \yrite-sets was first proposed in [8]. That work used the
the positive results in [8] is that the threads in our work ar§ignatures in the context of Thread-Level Speculation (TLS
much larger than the transactions and speculative threadsahd Transactional Memory (TM) for detecting conflicts asros
that work. speculative memory accesses and to selectively invalidate
incorrect speculative data from the caches in the case of
VII. RELATED WORK roll-backs. Recently, other hardware TM systems have been
Software and hybrid cache coherenc8pftware-directed augmented with this signature approach [32], [42]. Both TLS
cache coherence on shared-memory multiprocessors has be®hTM are novel programming models that differ significantl
previously proposed as an alternative to hardware-basgtkecafrom the familiar explicitly parallel programming modelah
coherence [11], [14], [35], [37], [38], [40]. Like the schewe we tackle in our work. Closer to our work, [9] used Bloom
propose, such schemes were also based on self invalidatifibsr read- and write-set signatures in the context of exihyi
and forced writebacks of the private caches at synchrapizat parallel shared-memory applications for achieving theaveh
points (some required a write-through cache instead offibrcior of the SC memory model while allowing hardware to
writebacks). As in our case, they relied on explicitly matkereorder memory operations. Again, the signatures are used f

11

rfl
D pertine water-spt barnes ocean-cp
W rv5-Bi0miny e .

| ——
|

08 L—"""

02 +— ‘ n Mﬁmﬁ“&w{%“\ | <
o L A‘Q% — O rertinv = fm v Drerine

hyb-Blooml
I ryi-eicomine I yb-8100minv

[——

o P

0.2 1

Invalidation rate
o ©
= o
J
: E
Invalidation rate

o o

Invalidation rate

Executioy

Fig. 8. Invalidation rates per synchronization event foodh filter based selective invalidation and perfect inatlith. Results are for processor 0 in a
32/16 processor configuration.

detecting conflicts across speculative memory accesses haddware-assisted scheme that uses Bloom filter based sig-
to selectively invalidate incorrect speculative data frtime natures to encode the threads’ write-sets efficiently and to
caches in the case of roll-backs. The key difference betwemore selectively invalidate the caches. The proposed sehem
such previous work and ours is that in those the protocol iequires only minor changes to the IS and the cache controlle
almost entirely implemented in hardware, while our apphoa&xperimental results show that the scheme improves thetwors
moves most of the required functionality to software. Aresth case performance and brings the performance of the hybrid
important difference is that all such previous works arecbasscheme very close to full hardware coherence for the vast
on protocols with speculative execution, which requirerevanajority of the applications studied. This suggests that th
further hardware support for roll-back, while our approash proposed scheme may be a viable alternative to full-blown

not speculative. hardware cache coherence.
Concurrently with our work, the work in [39] has also
advanced the idea of exposing signatures to the software whi ACKNOWLEDGMENTS

supporting the costly signature operations in hardware. Ou .) .]

work differ from that in that our goal is to provide a software Ve would like to thank Per Stenstrom and his group for their

signature-based mechanism that specifically aims at stipgor Many invaluable suggestions during the visit of Dr. Ashby to

a software cache coherence approach. The goal of that wéi@mers University of Technology, supported by the HIPEAC

is to provide a very flexible software signature mechanismn, §etwork. We also would like to thank Aris Efhtimyou and the

that it is overkill for addressing the specific problem thas wanonymous referees for their suggestions.

address. Also, in our work we demonstrate in detail how to

modify the software in order to use such a software signature REFERENCES

mechanism tc.) Sl_JppOl’t software cache coherence. [1] D. Abts, S. Scott, and D. J. Lilja. “So Many States, So leitTime:
Software Distributed Sharec! Merno_ryhere has been much ™" verifying Memory Coherence in the Cray XLIntl. Parallel and

work on software and hybrid distributed shared memory Distributed Processing SympApril 2003. ‘

systems (e.g., 6], [20], [22], [36]). One common differenc 2 & L 1S5 Y. % SO 12 0. 00 Cerence scnermis Symp. on

between all of those_ schemes and ours is that_ those targeted computer Architecturepages 298-308, May 1991. ' '

clusters of workstations and not only dealt with cache cofg] S. V. Adve and K. Gharachorloo. “Shared Memory ConsisyeModels:

herence but also provided the shared memory image. In our A Tutorial” IEEE ComputerVol. 29, No. 12, pages 66-76, December

X . 996.

Case we assume mU|t|processqu_ with shared memory a_nd ORdY E. Allen, D. Chase, V. Luchango, J.-W. Maessen, S. Ryl Gteele Jr.,

consider the problem of providing cache coherence in the and S. Tobin-Hochstadt. “The Fortress Language Speciitatiersion

software layer. Most of those schemes also differ from our 0.618." http://research.sun.com/projects/plrg/fas@618.pdf.

in th hani | d f h . f5 S. Bell, et. al. “TILE64 - Processor: A 64-Core SoC with &he

In the mechanisms employe .tO eniorce coherence. We rely nterconnect.’Intl. Solid-State Circuits ConfFebruary 2008.

on hardware mechanisms to identify the data that must ke] J. K. Bennett, J. B. Carter, W. Zwaenepoel. “Munin: Disited Shared

invalidated and/or written back and to handle false sharing Memory Based on Type-Specific Memory Coherenc/mp. on Prin-

- . ciples and Practice of Parallel Programmingages 168-176, March
while those rely on the virtual memory system and a page 1590_ 9 npag

level diff approach. [7] B. Bloom. “Space/Time Trade-offs in Hash Coding with élable
Errors.” Communications of the ACM/I. 13, No. 7, pages 422-426,
July 1970.
VIIl. CONCLUSIONS [8] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. “Bulkabidiguation

In this paper we revisit the idea of software-based cache of Speculative Threads in Multiprocessorslintl. Symp. on Computer
. Architecture pages 227-238, June 2006.
coherence with explicit writebacks and self-invalidaBo®ur (9] | ceze, J. Tuck, P. Montesinos, and J. Torrellas. “ButiédEcement of

study of software cache coherence for relaxed consistency Sequential Consistencylhtl. Symp. on Computer Architectyrpages
278-289, June 2007.
models has shown that, for a Iarge number Of. benChmar[::](. | A. Charlesworth. “The Sun Fireplane InterconnedEEE Micro, Vol.
from our test suite, even the most conservative approach’ 5, No. 1, pages 36-45, January-February 2002.
produces surprisingly little performance impact compat@d [11] H. Cheong and A. V. Veidenbaum. “A Cache Coherence Seh@th
a hardware coherence scheme. Certain benchmarks do suffer Fast Selective InvalidationIhtl. Symp. on Computer Architectyreages
. . 299-307, June 1988.
from a Iarge negative performance Impact due to the fl‘[!l!Z]l H. Cheong and A. Veidenbaum. “A Version Control Apprbao Cache
cache invalidations. We then proposed and evaluated a novel Coherence.Intl. Conf. on Supercomputingages 322-330, June 1989.

(23]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

12

H. Cheong. “Life Span Strategy - A Compiler-Based Apmrb to Cache [38] A. J. Smith. “CPU Cache Consistency with Software Suppnd

Coherence.Intl. Conf. on Supercomputingpages 139-148, June 1992.
R. Cytron, S. Karlovsky, and K. P. McAuliffe. “AutomatiManagement
of Programmable Cachedritl. Conf. on Parallel Processingages 229-
238, August 1988.

Cray Inc. “Chapel Language Specification
http://chapel.cs.washington.edu/spec-0.750.pdf.

E. Darnell and K. Kennedy. “Cache Coherence Using Ld¢abwl-
edge.”Intl. Conf. on Supercomputingages 720-729, June 1993.
M. D. Hill. “Multiprocessors Should Support Simple Memy Consis-

0.750."

tency Models.”IEEE Computer Vol. 31, No. 8, pages 28-34, August [41]

1998.

J. Howard, et. al. “A 48-Core |A-32 Message-PassingcBssor with
DVFS in 45nm CMOS.Intl. Solid-State Circuits ConfFebruary 2010.
R. Kalla, B. Sinharoy, and J. M. Tendler. “IBM Power5 @hA Dual-
Core Multithreaded ProcessolEZEE Micro, Vol. 24, No. 2, pages 40-47,
March-April 2004.

P. Keleher, A. L. Cox, and W. Zwaenepoel. “Lazy Releasmsistency
for Software Distributed Shared Memorylhtl. Symp. on Computer
Architecture pages 13-21, May 1992.

P. Kongetira, K. Aingaran, and K. Olukotun. “Niagara: 32-way
Multithreaded Sparc ProcessolZEE Micro, Vol. 25, No. 2, pages 21-
29, March-April 2005.

L. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas,Qierniak, S.

[39]

[40]

[42]

Using One Time Identifiers.Pacific Computer Communications Symp.
October 1985.

J. Tuck, W. Ahn, L. Ceze, and J. Torrellas. “SoftSig: @afre-Exposed
Hardware Signatures for Code Analysis and Optimizatidntl. Conf.
on Architectural Support for Programming Languages and 1@fieg
Systemspages 145-156, March 2008.

A. Veidenbaum. “A Compiler-Assisted Cache Coherencdution for
Multiprocessors.”Intl. Conf. on Parallel Processingpages 1029-1036,
August 1986.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Guptah¢
SPLASH-2 Programs: Characterization and Methodologicahsitier-
ations.” Intl. Symp. on Computer Architectyrpages 24-36, June 1995.
L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D.ilH
M. M. Swift, and D. A. Wood. “LogTM-SE: Decoupling Hardware
Transactional Memory from Cachedritl. Symp. on High-Performance
Computer Architecturepages 261-272, February 2007.

Parthasarathy, W. Meira Jr., S. Dwarkadas, and M. L. Scutl-based
shared memory on low-latency, remote-memory-access mietwdntl.
Symp. on Computer Architecturpages 157-169, June 1997.

R. Kumar, V. Zyuba, and D. M. Tullsen. “Interconnectioim Multi-core
Architectures: Understanding Mechanisms, Overheads, $caling.”
Intl. Symp. on Computer Architectyrpages 408-419, June 2005.
A.-C. Lai and B. Falsafi. “Selective, Accurate, and TimneSelf-
Invalidation Using Last-Touch Predictionihtl. Symp. on Computer
Architecture pages 139-148, June 2000.

J. Laudon and D. Lenoski. “The SGI Origin: a ccNUMA Higt$calable

Thomas J. Ashby Thomas Ashby is a senior re-
search engineer in the Digital Components division
of IMEC, the Belgian international microelectronics
research centre. He received his PhD in 2005 from
the University of Edinburgh for work on using
advanced languages and compiler optimisations for
scientific computing. Since then he has worked on
design automation for embedded systems and image
processing for hyperspectral applications.

PLACE
PHOTO
HERE

Server.” Intl. Symp. on Computer Architectyrpages 241-251, June
1997.

A. R. Lebeck and D. A. Wood. “Dynamic Self-InvalidatioReducing
Coherence Overhead in Shared-Memory Multiprocessdrsl’ Symp.
on Computer Architecturepages 48-59, June 1995.

M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Deb&Ehe
ALPBench Benchmark Suite for Complex Multimedia Applicais.”

Intl. Symp. on Workload Characterizatiopages 34-45, October 2005.
D. Lie, A. Chou, D. Engler, and D. L. Dill. “A Simple Methb
for Extracting Models from Protocol Codelhtl. Symp. on Computer
Architecture pages 192-203, June 2001.

P. S. Magnusson, M. Christensson, J. Eskilson, D. Fers@s. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, B. Werner. “Simics:ull Bystem
Simulation Platform.”|IEEE Computer Vol. 35, No. 2, pages 50-58,
February 2002.

J. M. Mellor-Crummey and M. L. Scott. “Algorithms for Skable
Synchronization of Shared-Memory Multiprocessors.” ACafs. on

Pedro Diaz Pedro Diaz is a Computer Architecture

PhD student at the University of Edinburgh. He
received his MS degree in Computer Engineering
from the Universidad Politecnica de Madrid in 2005.
His doctoral research involves the study of timeli-
ness of prefetching algorithms for uniprocessor and
multiprocessor systems.

PLACE
PHOTO
HERE

Computer Systems, Vol. 9, No. 1, pages 21-65, February 1991.

S. L. Min and J.-L. Baer. “A Timestamp-based Cache Cehee
Scheme."Intl. Conf. on Parallel Processingpages 23-32, August 1989.
C. C. Minh, M. Trautmann, J.-W. Chung, A. McDonald, N.d&son,
J. Casper, C. Kozyrakis, and K. Olukotun. “An Effective HgbFrans-
actional Memory System with Strong Isolation Guarantebsl! Symp.
on Computer Architecturepages 69-80, June 2007.

M. F. P. O'Boyle, R. W. Ford, and E. A. Stohr. “Towards &eal

and Exact Distributed Invalidatioddurnal of Parallel and Distributed
Computing Vol. 63, No. 11, pages 1123-1137, November 2003.

S. Owicki and A. Agarwal. “Evaluating the Performanck Software
Cache Coherencelhtl. Conf. on Architectural Support for Programming
Languages and Operating Systemages 230-242, April 1989.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W
Kleinfelder, K. P. McAuliffe, E. S. Melton, V. A. Norton, andl Weiss.
“The IBM Research Parallel Processor Prototype (RP3)othiction
and Architecture.”Intl. Conf. on Parallel Processingpages 764-771,
August 1985.

Marcelo Cintra Marcelo Cintra received the BS
and MS degrees from the University of Sao Paulo
in 1992 and 1996, respectively, and the PhD de-
gree from the University of Il linois at Urbana-
Champaign in 2001. After completing his PhD he
joined the Faculty of the University of Edinburgh,
where he is now an associate professor. His research
interests span parallel architectures, optimizing com-
pilers, and parallel programming. He has published
extensively in these areas. He is a member of the

PLACE
PHOTO
HERE

S. K. Reinhardt, J. R. Larus, and D. A. Wood. “Tempest @apghoon:

ACM, the IEEE, and the IEEE Computer Society.

More information about his current research activities da found at

User-Level Shared Memory.Intl. Symp. on Computer Architectyre http://www.homepages.inf.ed.ac.uk/mc.

pages 325-336, June 1994.

H. Sandhu, B. Gamsa, and S. Zhou. “The Shared Regionsoapp
to Software Cache Coherence on Multiprocessdgihp. on Principles
and Practice of Parallel Programmingages 229-238, May 1993.

