
XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 1

Parallelizing 2D-Convex Hulls on clusters:
Sorting matters

Pedro Dı́az, Diego R. Llanos, Belén Palop.

Abstract— This article explores three basic ap-

proaches to parallelize the planar Convex Hull on

computer clusters. Methods which are based on sort-

ing the points are found to be inadequate for com-

puter clusters due to the communication costs in-

volved.

Keywords— convex hull, sorting, cluster, computa-

tional geometry

I. Introduction

IN this article we discuss several methods for par-
allelizing the computation of planar Convex Hulls.

These methods are based on three sequential Convex
Hull algorithms. Two of the algorithms we have con-
sidered have optimal time complexity and require a
preprocessing step where points are lexicographically
ordered. The third one shows the best performance
on randomized input set, where complexity is ex-
pected (but not guaranteed) to be optimal. In this
paper we show that the high communications cost as-
sociated to computer clusters makes the sorted input
algorithms perform badly.

The rest of the article is organized as follows. In
Section II we define the Convex Hull of a set of
points in the plane and introduce three algorithms
for its computation; in Section III we make some
preliminary considerations about computer clusters
and their programming model; in Section IV we de-
scribe different parallel sorting algorithms for clus-
ters; in Section V we resume the different strategies
studied for computing the Convex Hull in a cluster;
in Section VI we present the environment setup; in
Section VII we describe the results obtained; and
Section VIII concludes the paper.

II. The Convex Hull

Computing the Convex Hull of a set of points is
one of the most studied problems in Computational
Geometry. Practical applications of the Convex Hull
of a set of points are multiple and diverse, ranging
from Statistics Analysis to Pattern Recognition.

Given a set S of points in the plane, the Con-
vex Hull of S, CH(S), can be defined as the convex
polygon with minimum area containing S. Figure 1
shows an example point set and its associated Con-
vex Hull.

Computing the planar Convex Hull has a complex-
ity lower bound of Ω(n log n). An intuitive demon-
stration follows: The Convex Hull can be used to

Facultad de Informática, Universidad Politécnica de Madrid.
Email: pdiaz@laurel.datsi.fi.upm.es

Departamento de Informática, Universidad de Valladolid.
Email: {diego,belen}@infor.uva.es. D. R. Llanos is par-
tially supported by RII3-CT-2003-506079. B. Palop is par-
tially supported by TIC2003-08933-C02-01.

-100000

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

-100000 -80000 -60000 -40000 -20000 0 20000 40000 60000 80000 100000

Convex Hull
Input points

Fig. 1. Convex Hull of a 100-points set

sort a set of points S = {(x, y)/x ∈ R, y = x2}.
Because the lower bound of a compare-based sort is
Ω(n log n) the lower bound for computing a Convex
Hull of a set of points must be the same.

It is out of the reach of this article to review all
Convex Hull algorithms in existence. Instead we will
briefly explain the algorithms on which our paral-
lelization strategies are based. For a more in-depth
review of Convex Hull algorithms the reader is re-
ferred to the numerous literature, such as [1], [2] or
[3].

As we said before, Convex Hull algorithms can be
categorized into two main groups: algorithms that
need the input points to be lexicographically sorted
and algorithms that operate on non-sorted inputs.
We will describe briefly each group.

A. Sorted input algorithms

The Divide and Conquer algorithm is an elegant
method of calculating the Convex Hull of a set of
points based on this widely known algorithm design
technique.

Given a sorted list of points, the algorithm pro-
ceeds in the following way: if the list has three or less
elements the convex hull can be constructed imme-
diately. If the list has more elements it is partitioned
into two halves, on the left and right halfplanes with
respect to a vertical line, thus dividing the set into
two equal-sized subsets. These subsets are processed
recursively by the algorithm. From these two halves
of points we will get two disjoint partial convex hulls,
which can be merged in linear time. The complexity
of this algorithm is O(n log n); therefore it is opti-
mal. More information about this algorithm can be
found in [1].

The Incremental algorithm also calculates the
Convex Hull of a set of points in O(n log n) time.
This algorithm works in an incremental way, adding

2 DÍAZ, LLANOS, PALOP: PARALLELIZING 2D-CONVEX HULLS ON CLUSTERS: SORTING MATTERS

1

2

3

4

5

Edge of a previous convex hull

Edge of the current convex hull

Link between edges

Fig. 2. Relationship between edges in RIC algorithm

on each step a point outside the Convex Hull.

B. Randomized Incremental Construction (RIC) of
the Convex Hull

The Randomized Incremental Construction of the
Convex Hull (RIC from now on) is also an incremen-
tal algorithm. Unlike the sorted input Incremental
algorithm this one does not need to previously sort
the points.

Given a point set Si and its associated Convex
Hull CH(Si), computing the Convex Hull associated
to Si+1 (Si augmented with a new point p) is done
in the following way: first we have to determine if
p lies within or outside CH(S). If p is inside CH(S)
we can ignore p because CH(Si+1) will be equal to
CH(Si). If p is outside CH(S) a new Convex Hull is
constructed adding p to CH(S), using the same algo-
rithm that was used in the sorted input Incremental
algorithm.

How do we decide if p is inside or outside CH(Si)?
This can not be done in less than O(n) worst case
time, but can be done in O(log n) average case time
if the right data structures are chosen. It is clear
that if p is outside CH(Si) at least one of its edges
will not be part of CH(Si+1), being replaced with
two new edges of CH(Si+1). If we place pointers on
the replaced edges to the edges that replaced them
in CH(Si+1) a O(log n) average case search from the
initial convex hull to the current one can be imple-
mented (Figure 2). More information about this pro-
cedure can be found in [4].

It is not difficult to see that the RIC algorithm
has a worst case runtime complexity of O(n2). The
reason that makes RIC interesting on this study is
the fact that it runs in O(n log n) time on the average
case, usually outperforming in execution time other
asymptotically optimal algorithms.

III. Parallel programming on clusters

Several theoretical parallel programming models
and paradigms such as PRAM or BSP have been
proposed over the years, each one offering its own
view on how a parallel processing machine should
look like or behave. The algorithms and methods
proposed in this article are designed to work on
computer clusters, which are real parallel systems.
No generalization to other parallel systems has been

sought.

A computer cluster is a group of (often homoge-
neous) computer systems, interconnected using some
network technology. Each computer system of the
cluster is called a node.

Parallelism is usually achieved on a cluster run-
ning one or several programs on each node, each one
exchanging data with the others using some kind
of message-passing protocol. The message-passing
paradigm is particularly appropriate for program-
ming parallel applications that run on clusters and
therefore several standards exist. The Message Pass-
ing Interface (MPI) [5] is probably the most popular
one and thus it is the one used in the implementation
of the algorithms explained here.

Compared to local memory access, computer clus-
ters have a well-known drawback: their slow inter-
connection speed and bandwidth. These factors limit
what kind of parallel algorithms can be adapted to
run on such systems; fine-grained parallel programs
which involve intensive intercommunication between
processes often do not perform or scale properly
when implemented on a cluster.

We will use the term process to refer to a program
run on a node of the cluster which is part of a par-
allel application. In order to let the processes of a
parallel program communicate with each other some
kind of identification scheme must be implemented.
The MPI identification scheme is the one used in this
article. In this scheme each process of the parallel ap-
plication is assigned a natural number, starting with
number zero. The identification number of a process
is called the rank of the process and identifies the
process in the parallel application.

All parallel algorithms described on this article fol-
low the master-slave model of parallel programming.
In this model, one of the processes acts as the master
and the rest work as slaves. The master’s function
is to conduct the slave “workforce”, supplying them
with data to be processed when necessary. The slave
processes have a mere computational task in the clus-
ter.

IV. Sorting on computer clusters

Sorting plays such an important role on a lot of
Convex Hull algorithms. Two different parallel sort-
ing methods are discussed in this section.

As we said in the preceding section, the main dis-
advantage of computer clusters is the high cost of
interprocess communication. Having this limitation
in mind we propose in this section two parallel sort-
ing methods which have a low intercommunication
profile. These algorithms, although pretty basic and
simplistic, have been found to have better perfor-
mance on small to medium-size clusters with com-
modity interconnection networks than other sophis-
ticated algorithms such as parallel shellsort [6] or
bitonic sort [7].

XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 3

Fig. 3. Parallel mergesort

A. Parallel mergesort

The first algorithm described here is the parallel
variant of the well-known mergesort algorithm. On
this algorithm the master subdivides the input points
into p sublists, sending one sublist to a different slave
process. Each slave receives and sorts its sublist,
using a sequential quicksort.

The sorted sublists at each slave should then be
merged. In this algorithm we will use a two-phase
merge procedure. In the first phase slaves with odd
rank R send its sublist to slave R + 1, which merges
it with its local sublist. In the second phase slaves
with even rank send their merged sublists to the mas-
ter process, which constructs the final sorted list of
points. Figure 3 illustrates a parallel mergesort with
four slaves.

B. Parallel Naive Quicksort

Several parallel variations of the well known quick-
sort algorithm have been proposed in the literature
(see, e.g., [6], [8], [7]). Unfortunately most of these
variations imply a level of intercommunication be-
tween processes that makes them impractical for
computer clusters or other distributed architectures
whatsoever.

A simplistic variation of the quicksort algorithm
that to the best of our knowledge reduces communi-
cation to a minimum is described here. This algo-
rithm is also known as Parallel Samplesort [7].

The algorithm starts with the master sorting a
small sample of the point set. This sample is used to
find p − 1 pivots, which subdivide the point set into
p sublists. These sublists are sent to the slave pro-
cesses, where they are sequentially sorted and sent
back to the master. No merging is necessary. Figure
4 illustrates this algorithm.

V. Computing the Convex Hull in parallel

Table I resumes the strategies studied for comput-
ing the Convex Hull in parallel. Strategies DaC-M,
DaC-Q, Inc-M and Inc-Q are similar: all of them per-
form the following steps:

1. Sort the input points in parallel (either using
Naive Quicksort or Mergesort)

2. At the master processor, partition the sorted
points into p sublists, and send each sublist to a

Fig. 4. Parallel Naive Quicksort

CH(S) Mergesort Naive Quicksort No sort

DaC DaC-M DaC-Q

Incr. Inc-M Inc-Q

RIC RIC-RIC

TABLE I

Parallelization strategies and their variants:

Divide-and-Conquer (DaC), Sorted-input Incremental

(Incr.) and Randomized Incremental (RIC).

different slave processor
3. At each slave processor, compute the Convex

Hull of the received sublist (either using the Di-
vide and Conquer algorithm or the Incremental
algorithm). Return the result to the master

4. At the master processor, receive the partial
Convex Hulls from each slave and merge them.

Strategy RIC-RIC is defined as follows:

1. At the master processor, partition the point set
into p sublists, and send each sublist to a differ-
ent slave processor

2. At each slave processor, compute the Convex
Hull of the received sublist using the sequential
RIC algorithm. Return the points of the result-
ing Convex Hull to the master

3. At the master processor collect the points from
each slave processor and calculate its Convex
Hull using the sequential RIC algorithm

VI. Environment setup

All the experimental results showed in the next
section were measured on a small cluster of comput-
ers. The technical specifications are described in Ta-
ble II.

Although each node has two processors only one
has been used in our experiments, to force network
communication among processes. The message-
passing programming interface used is LAM, a
widely used MPI implementation. The algorithms
are implemented in the C programming language
(source code available on request).

4 DÍAZ, LLANOS, PALOP: PARALLELIZING 2D-CONVEX HULLS ON CLUSTERS: SORTING MATTERS

Architecture: Intel x86
CPU: 2× Intel Xeon

�

, 2.4 Ghz
RAM size: 896 MB
Sec. storage: 30GB SCSI hard disk
Network: Dual Gigabit Ethernet
O.S. GNU/Linux

TABLE II

Per-node hardware description

Algorithm Time (s)
RIC 5.327
Divide and Conquer 26.11
Incremental 29.829

TABLE III

Running time of the sequential algorithms

VII. Results

Experimental results measured in the cluster fol-
lows. The main input set consists of 40×106 points in
a disc-like shape. This shape is particularly appro-
priate because the resulting Convex Hull will have
many edges but without being a degenerate case.

Table III gives the running time of the sequen-
tial Convex Hull algorithms on a single node of the
cluster. A sequential Quicksort was used to sort the
points when needed.

Figure 5 shows the number of slave processes ver-
sus the total running time of the parallel Convex Hull
algorithms explained in this article.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8

T
im

e
(s

)

Slave processes

RIC-RIC
DaC-M
DaC-Q

Inc-M
Inc-Q

Fig. 5. Number of slave processes with respect to total run-
ning time for each parallel Convex Hull algorithm

Figure 6 shows absolute speedups calculated
against the best sequential algorithm (which for av-
erage case input is RIC) of each parallel algorithm.
Figures 7 and 8 show the relative speedups and effi-
ciencies (calculated against the sequential version of
the same algorithm).

Figures 9, 10, 11, 12 and 13 show running time
breakdowns of each algorithm, decomposed in three
factors:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1 2 3 4 5 6 7 8 9

S
pe

ed
up

p

RIC-RIC
DaC-M

Inc-M
DaC-Q

Inc-Q

Fig. 6. Absolute speedups

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9

S
pe

ed
up

p

RIC
DaC-M

Inc-M
DaC-Q

Inc-Q

Fig. 7. Relative speedups

• Exec. time: Time spent by the program execut-
ing the algorithm’s code

• Contention + comms. time: Time spent by the
message-passing library (LAM) on communica-
tions and synchronization

• LAM overhead: Time spent inside the LAM li-
braries when not blocked or exchanging data

Since not all processes of a parallel application
have the same execution pattern it is difficult to ex-
actly measure and classify their running times into
one of the three categories mentioned above. To ob-
tain a general view of the times involved, the ap-
proach used here was to measure each of these fac-
tors on each process and sum them to obtain three
values which then are normalized to divide each run-
ning time into three sections. Since we used certain
non-blocking communication primitives, some peri-
ods of time are used both for the execution of the
algorithm and for the underlying communications.
We have accounted them as communication time.

The most relevant result is that the RIC algorithm
is the fastest one in terms of execution time, although
its relative speedup is the lowest one. This behavior
can be explained in terms of Amhdahl’s Law. In the
execution of the algorithm we have a communica-
tion time (about 2.8 seconds in our case) in order to
transfer a partition of the dataset to each one of the
slaves. This time is fixed for any number of slaves

XV JORNADAS DE PARALELISMO—ALMERIA, SEPTIEMBRE 2004 5

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9

E
ffi

ci
en

cy

p

RIC-RIC
DaC-M

Inc-M
DaC-Q

Inc-Q

Fig. 8. Relative efficiencies

Fig. 9. Time decomposition for DaC-M

between two and eight. The communication can not
be avoided, as long as the cluster is a distributed-
memory system. According with Amhdahl’s Law,
this fixed time imposes a limit to the speedup that
can be obtained with a parallel version of the algo-
rithm, regardless of the number of slaves (Figure 14).

Sending data across the network can be done in
O(n) time. As we said earlier, the calculation of the
Convex Hull can not be done in less than O(n log n)
time. Therefore, as the input set size increases, the
time to compute CH(S) will be more important than
the time needed to send the data across the network.

VIII. Conclusions

Sorting is a preliminary step mandatory in many
Computational Geometry algorithms. The need to
previously sort the input point set introduces a whole
family of problems which can be summarized as fol-
lows:

• More communication is involved. In shared-
memory parallel systems with high speed inter-
connection buses this is not as problematic as
in clusters, where each byte is costly sent or re-
ceived.

• Parallel sorting is not a trivial subject. By re-
quiring the points to be sorted (in parallel) we

Fig. 10. Time decomposition for Inc-M

Fig. 11. Time decomposition for DaC-Q

Fig. 12. Time decomposition for Inc-Q

6 DÍAZ, LLANOS, PALOP: PARALLELIZING 2D-CONVEX HULLS ON CLUSTERS: SORTING MATTERS

Fig. 13. Time decomposition for RIC-RIC

Fig. 14. Influence of transfer time (Tpart) in the total running
time on the parallel RIC algorithm

are adding complexity to an otherwise straight-
forward solution.

Our first conclusion is that Convex Hull algorithms
which require a preliminary sort of the input set
are not appropriate for parallelization on a cluster.
Methods that do not require this preliminary sort are
likely to be much faster even if they are not asymp-
totically optimal.

We have also found that the communication cost in
computer clusters is too high for focusing on a purely
data-divide approach for this problem, regardless of
the particular algorithm used. Heuristics such as an
initial filtering to discards points that will not be in
the final convex hull may be applied to reduce the
input size and thus the time spent on communica-
tions.

References

[1] Joseph O’Rourke, Computational Geometry in C, Cam-
bridge University Press, second edition, 1998.

[2] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf, Computational Geometry: Algorithms
and Applications, Springer-Verlag, second edition, 2000.

[3] Franco P. Preparata and Michael Ian Shamos, Compu-
tational Geometry: An Introduction, Springer Verlag,
1993.

[4] Kurt Mehlhorn and Stefan Nher, LEDA : A Platform for
Combinatorial and Geometric Computing, Cambridge
University Press, 1999.

[5] MPI Forum, “MPI: A message passing interface,” in
Proc. of the 1993 Intl. Conf. on Supercomputing, novem-
ber 1993, pp. 878–883.

[6] Ananth Grama, Anshul Gupta, George Karypis, and
Vipin Kumar, Introduction to Parallel Computing, Ad-
dison Wesley, second edition, 2003.

[7] Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina,
Parallel Computing Works, Morgan Kaufmann Publish-
ers, 1994.

[8] Youran Lan and Magdi A. Mohamed, “Parallel quick-
sort in hypercubes,” in Proceedings of the 1992
ACM/SIGAPP symposium on Applied computing. 1992,
pp. 740–746, ACM Press.

[9] Janez Brest, Aleksander Vreze, and Viljem Zumer, “A
sorting algorithm on a pc cluster,” ACM Symposium on
Applied Computing, vol. 2, 2000.

[10] M. Diallo, Alfonso Ferreira, Andrew Rau-Chapling, and
Stephane Ubeda, “Scalable 2d convex hull and trian-
gulation algorithms for coarse grained multicomputers,”
1996.

